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Teleportation as a Depolarizing Quantum Channel, Relative Entropy, and Classical Capacity
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We show that standard teleportation with an arbitrary mixed state resource is equivalent to a gen-
eralized depolarizing channel with probabilities given by the maximally entangled components of the
resource. This enables the usage of any quantum channel as a generalized depolarizing channel without
additional twirling operations. It also provides a nontrivial upper bound on the entanglement of a class
of mixed states. Our result allows a consistent and statistically motivated quantification of teleportation
success in terms of the relative entropy and this quantification can be related to a classical capacity.

DOI: 10.1103/PhysRevLett.87.267901 PACS numbers: 03.67.Hk, 03.65.Ud, 89.70.+c
The possibility of transferring an unknown quantum
state using preexisting entanglement and a classical infor-
mation channel was labeled teleportation by its authors
[1]. The teleportation process can be viewed as a quantum
channel. The nature of the channel is determined by both
the state used as a teleportation resource and the particular
protocol used with this resource [2–4]. The standard
teleportation protocol T0 using the Bell diagonal measure-
ments and Pauli rotations, when used in conjunction with
a Bell state resource, provides an example of a noiseless
quantum channel LT0�jC1� �C1j�� � � . Teleportation
using mixed states as an entanglement resource is, in
general, equivalent to a noisy quantum channel. A general
expression for the output state of a teleportation process
with an arbitrary mixed resource, in terms of some
quantum channel, has been shown previously [4]. In this
Letter, we derive an explicit expression for the quantum
channel associated with the standard teleportation protocol
on a mixed state resource. Our result establishes a many to
one correspondence between arbitrary bipartite quantum
states and generalized depolarizing channels. This is
a complete generalization of an earlier correspondence
noted by the Horodecki’s [2] between quantum channels
L and the restricted class of quantum states rL with one
reduced density matrix equal to the maximally mixed
state. We then present both practical and theoretical
applications of our result. From a practical point of view,
our result allows an arbitrary quantum channel to be
used as a generalized depolarizing channel. It permits
Bell diagonal states to be shared between ends of an
arbitrary channel without resorting to the time-consuming
twirling operations [2,5]. On the theoretical side, our
result can be used to obtain a nontrivial upper bound
on the entanglement of a certain class of mixed states.
We then show that our result allows the quantification
of the success of teleportation consistently (i.e., without
any divergence) in terms of the relative entropy. This
quantification unifies the methodology of quantification of
teleportation success with that of entanglement [6,7] and
classical capacity [8–12]. More importantly, it gives a
statistical interpretation of the teleportation success, with
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collective measurements being allowed on an ensemble
of N teleported states after N separate teleportation
processes [6]. The currently used fidelity of teleportation
[2] fails to do this. In the end we show that teleporta-
tion success, as quantified by the relative entropy, is
bounded above by a classical capacity. This relation
can be regarded as connecting a quantum and a classical
capacity.

We start by stating the main result of the Letter before
going into its proof. It states that the standard teleportation
protocol T0, when used with an arbitrary two qubit mixed
state, x, as a resource, acts as a generalized depolarizing
channel,

LT0�x�� �
X

i

Tr �Eix�si�si , (1)

where the Ei’s are the Bell states associated with the Pauli
matrices si , by Ei � siE0si , where E0 � jC1� �C1j

and s0 � I, s1 � sx , s2 � sy, and s3 � sz.
The result generalizes the relationship between particu-

lar teleportation protocols and quantum channels to include
all 2 3 2 mixed states and proves the conjecture (made in
Ref. [2]) that the relationship between mixed states used
for teleportation and the resultant quantum channel is not
one to one. The derivation, it may be noted, rests critically
on the linearity of the teleportation protocol [1]. We also
extend the result to teleportation with d 3 d state systems.
We next proceed to the derivation of our central result.

Suppose Alice wishes to teleport the unknown qubit � ,
then initially we can extend this state to a 2 3 2 pure state
jc�12, even if � is initially pure, such that Tr2�jc� �cj12� �
� . We then teleport only the original state � and examine
the outcome by comparing the total state jc� to the entan-
glement swapped state. Since an arbitrary state in a 2 3 2
system may be written in terms of a superposition of Bell
basis states,

jc� � c0jC
1� 1 c1jC

2� 1 c2jF
1� 1 c3jF

2� , (2)

and because of the linearity of the teleportation protocol,
we need only look at how the component Bell states of the
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density matrix jc� �cj are affected by teleportation using
the T0 protocol, using an arbitrary resource r.

We label the 2 3 2 state used in the teleportation by
jc�12 and the resource by x34, where the subscripts de-
note the particle number. Alice has qubits in states x3 �
Tr4�x34� and �1 � Tr2�jc� �cj12�, and Bob has a qubit in
the state x4 � Tr3�x34�. The outcome of the teleportation
is the state

LT0 �x34� jc� �cj12 � v24 . (3)

Choosing the basis state jc�12 � jC1�, in Eq. (3), we note
that the teleportation then becomes a version of entangle-
ment swapping [1,13,14] with one perfect and one noisy
entangled state. Given a measurement outcome of the ith
state upon measurement, we know that the final state, be-
fore the unitary operation, is in the state v

i
24 � s

i
2x24s

i
2,

because this is equivalent to teleportation with the state
jC1�12, without applying the unitary transform s

i
2 to the

output state, and si � �si�y � �si�21.
As the teleportation uses the channel x34, the unitary

operation is applied to x4, and the output state is then

vi
24 � si

4si
2x24si

2si
4 , (4)

and therefore, over all outcomes i, the final total teleported
state is

v24 �
X

i

piv
i
24 �

X
i

pis
i
4si

2x24si
2si

4 , (5)

where pi is the chance of obtaining outcome i upon
measurement.

A tedious calculation shows that the probability of gain-
ing outcome i, for the combined Bell state measurements
on qubits 1 and 3, is simply pi � 1�4. Hence, we can
move the summation to obtain

v24 �
1
4

X
i

si
4si

2x24si
2si

4 (6)

�
X

i

Ei
24x24Ei

24 (7)

�
X

i

Tr�Ei
34x34�Ei

24 (8)

�
X

i

Tr�Ei
34x34�si

4jC
1� �C1j24si

4 . (9)

The equality between Eq. (6) and Eq. (7) can be shown by
decomposing the Pauli operators in Eq. (6) in terms of the
Bell state projectors, for example, s

1
2s

1
4 � E0

24 1 E1
24 2

E2
24 2 E3

24, and noting that all terms except those of the
form given in Eq. (7) cancel.

Substituting another Bell state E
j
12 into Eq. (3) simply

rotates the output state by the corresponding Pauli operator
s

j
2v

i
24s

j
2 , and so
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v
� j�
24 � s

j
2

√X
i

Tr �Ei
34x34�Ei

24

!
s

j
2 (10)

�
X

i

Tr �Ei
34x34�si

4E
j
24si

4 . (11)

Additionally, the off diagonal Bell terms, Fmn �
smjC1� �C1jsn, for m fi n, follow by the linearity of
the standard teleportation protocol,

v
�mn�
24 � sm

2

√X
i

Tr�Ei
34x34�Ei

24

!
sn

2 (12)

�
X

i

Tr�Ei
34x34�si

4Fmn
24 si

4 . (13)

The total final teleported state, given an arbitrary state
jc� �cj12 as input, is then

v24 � jc0j
2

X
i

Tr �Ei
34x34�si

4jC
1� �C1j24si

4

1
X
jfi0

jcj j
2

X
i

Tr �Ei
34x34�si

4E
j
24si

4

1
X

mfin
cmc�

n

X
i

Tr�Ei
34x34�si

4Fmn
24 si

4 (14)

�
X

i

Tr �Ei
34x34�si

4jc� �cj24si
4 , (15)

and by tracing over qubit 2 in Eq. (15) and comparing with
Eq. (1) we can see that the channel acts as a generalized
depolarization channel,

LT0�x�� �
X

i

pis
i�si , (16)

with the probabilities given by the projections of the Bell
states on the teleportation resource pi � Tr �Eix�. The
above result has been proved so far only for the teleporta-
tion of state r of a single qubit. From Eq. (15) and linear-
ity, it can easily be extended to the case of teleportation of
one-half of a 2 3 2 mixed state g12 (i.e., for entanglement
swapping) through a bipartite resource x34. We simply
have to replace jc� �cj24 in Eq. (15) by g24 in order to
obtain the output state of the teleportation process. Tele-
portation of an entangled mixed state g12 is thus given by

LT0�x�g �
X

i

Tr �Eix�si
4g24si

4 . (17)

Equations (16) and (17) are the first ever general expres-
sions for teleportation and entanglement swapping with ar-
bitrary mixed states, as long as the teleportation protocol
is kept standard. One must remember that for optimal uti-
lization of a given entangled resource, one must choose
local basis states such that p0 is maximum. One can re-
gard this particular state as the principal state (jC1�� of the
267901-2
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teleportation protocol. In principle, it should allow one to
rederive all known results about the standard protocol (for
example, the dependence of teleportation fidelity on the
maximally entangled fraction [2] only). However, in the
rest of this Letter, we explore those consequences of our
result which are unknown to date.

Equation (17) immediately provides an upper bound to
the entanglement of a class of mixed states. From the fact
that entanglement cannot be increased under local actions
and classical communications, it follows that the output
entangled state l � LT0�x�g must have an entanglement
lower than that of the less entangled of the states g12 and
x34. Therefore, for any state l12 expressible in terms of
another state g12 as

P
i pis

i
2g12s

i
2, the entanglement

E �l� # E �b�pi 	� , (18)

where b�pi 	 denotes the class of states with Bell diago-
nal projections pi . This bound implies that for gener-
lized qubit depolarizing channels, L, with a spectrum
pi [ �0, 1�2�, we have Lr to be separable for all r. In
other words, no matter what initial state you use, you can
never establish entanglement between the ends of such
a channel. When b�pi	 are taken to be Bell diagonal
states, the upper bound of Eq. (18) will complement the
usual lower bounds on entanglement of states obtained by
wernerization [5]. The above bound implies that the en-
tanglement left after passing one-half of an arbitrary mixed
entangled state g through a generalized depolarizing chan-
nel is less than or equal to that left when one-half of a Bell
state is passed through the channel. The nontriviality of the
result stems from the fact that even if g is obtainable from
a Bell state by action of local operators, these operators
do not necessarily commute with those of the depolarizing
channel.

The next noteworthy consequence of our result is that
it provides an alternative to the use of time-consuming
twirling operations [2,5] in quantum communication proto-
cols. Such operations involve applying random local uni-
tary operations to an entangled pair of particles to bring
them to a Bell diagonal state. Here, first, there is the prob-
lem of the choice of local operations (being decided classi-
cally) being pseudorandom. Second, it has to be done to a
large enough ensemble, and later on, the memory of which
random rotation was applied to which pair has to be forgot-
ten. Obtaining Bell diagonal states via twirling could thus
potentially be a very time-consuming process. Our result,
Eq. (17), clearly illustrates that one can produce a Bell di-
agonal state from any mixed state by local actions without
twirling. One simply has to teleport the state jc1� through
the given mixed state using the standard teleportation pro-
tocol. Each member of the resultant ensemble is already
in a Bell diagonal state without the necessity of forgetting
any local actions. Moreover, the randomness is intrinsic
“quantum” randomness, stemming from the teleportation
protocol.
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We pause here briefly to provide the generalization
of our derivation to higher dimensional analogs of the
standard teleportation scheme, with mixed resource states.
For a d 3 d state system, the standard teleportation
scheme is constructed using the maximally entangled
state, jC1� �

1
p

d

P
j j j� j j�, and the set of unitary

generators Unm
�1� �

P
k e2pikn�d jk� �k © mj, acting on

the first part of the system, where © denotes addition
modulo-d. The set of maximally entangled states is then
denoted by Enm � UnmjC1� �C1j �Unm�y, respectively,
for n, m � 0, 1, . . . ,d 2 1. If steps corresponding to
those of Eqs. (4)–(9) are carefully carried out in this case,
the higher dimensional teleportation channel remains a
depolarizing channel of the form

L� �
X
nm

Tr �Enmr�Un�2m���Un�2m��y. (19)

Now we proceed to one of the most important conse-
quences of our result, namely, the fact that the teleported
state [Eqs. (16), (17), and (19)] is always mixed, apart from
the isolated case of maximally entangled channel. This
implies that the relative entropy between the input state
and the output state will always be finite. This allows us
to quantify the success of teleportation using the relative
entropy. Without our result [Eqs. (16) and (19)], there is
no way to be sure that relative entropy between the input
and the output state of the standard teleportation protocol
would not blow up. The quantum relative entropy [6,7,15]
is defined as S�rjjv� � Tr �r logr 2 r logv� and has a
statistical interpretation [16], where the probability of mis-
taking the state v for the state r after N measurements is
given by P�v ! r� 
 e2NS�rkv� as N ! `. The success
of teleportation may then be given by

F � S�cinjjvout� , (20)

averaged over all pure input states, cin, in a similar way
to fidelity, and vout is the output state. Physically, this has
significance when a third party wishes to verify a, possibly
imperfect, teleportation between two untrusted parties. We
define imperfect as meaning the teleporting parties share
no entanglement. The probability of the third party being
fooled by the imperfect teleportation scheme, for a large
number of states N , is given by e2NS�cinkvout�, even assum-
ing the third party is making optimal generalized collective
measurements over the N teleportations. The relative en-
tropy thus provides an asymptotic (collective) measure of
teleportation success compared to the “single shot” nature
of the fidelity measure.

The above measure can be readily applied to demon-
strate that teleporting one-half of a maximally entangled
state is a better way to detect the presence of entangle-
ment than teleporting a single d state system. Using the
quantum relative entropy to examine the fidelity of entan-
glement swapping, we can choose the state jC1� as the
input state, and the relative entropy, F 1, is given by
267901-3
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S�jC1� �C1jjjvout� � 2Tr �jC1� �C1jlogvout� (21)

� 2 logTr�jC1� �C1jr� (22)

� 2 logF , (23)

the negative log of the singlet fraction of the resource r.
The maximally entangled fraction for separable states is
bound by 1�d2 # F # 1�d, which gives bounds on the
relative entropy,

logd2 $ F 1 $ logd . (24)

Since Eq. (20) is bounded above by F # logd (for tele-
portation of a single d state system), the optimal method
for verification of the presence of entanglement through
teleportation is by sending half of a maximally entangled
d 3 d pair through the teleportation channel.

We now proceed to show how the success of telepor-
tation, when quantified by the relative entropy, can be
related to a classical capacity. The classical capacity of
communication using the quantum states ri � sirsi as
letters (for qubits si are the Pauli matrices and identity,
while for higher dimensions, they are corresponding gen-
eralizations), with a priori probabilities pi is given [8] by
C �

P
i piS�ri jj

P
j pjrj�. From Eqs. (16) and (20), it is

clear that each term in the above summation can be inter-
preted as an unaveraged relative entropy measure of suc-
cess of a standard teleportation protocol with a different
utilization of the same resource. The particular state to be
teleported is r and the resource x has maximally entangled
components with weights pi . While the first term corre-
sponds to optimal utilization of the resource for telepor-
tation, the other three terms correspond to a less efficient
teleportation using the maximally entangled components
of lower weight as the principal state (jC1�� for telepor-
tation. Worse teleportation implies a greater value of the
relative entropy between the input and the output state, by
virtue of which we have

F # C , (25)

where C is the average of C taken over all possible pure
input r � cin. Physically, this means that the relative
entropy measure of teleportation success will be bounded
above by the average classical communication capacity us-
ing pure letter states related by Pauli rotations with a priori
probabilities being given by the weights of the maximally
entangled components of the resource. This result can be
regarded as connecting a quantum and a classical capacity.

In this Letter we have presented an explicit expression
for the output of a standard teleportation protocol using an
267901-4
arbitrary mixed resource. Most known results about the
standard teleportation process [2,5] follow quite straight-
forwardly from our expression. It also has the poten-
tial for generating a host of other results (of which, we
have given three distinct examples) relating to the stan-
dard teleportation process with an arbitrary mixed state.
Most importantly, our result allows us to define a statisti-
cal measure of teleportation success in terms of relative en-
tropy. It will be straightforward to generalize our result to
multiparty scenarios of entanglement swapping [14] with
Greenberger-Horne-Zeilinger state measurements and ar-
bitrary mixed states. The use of “twisted” entangled states
[17] may also lead to the generalization of this result to
arbitrary teleportation schemes.
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