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Saturation of Electrical Resistivity in Metals at Large Temperatures
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We present a microscopic model for systems showing resistivity saturation. An essentially exact
quantum Monte Carlo calculation demonstrates that the model describes saturation. We give a simple
explanation for saturation, using charge conservation and considering the limit where thermally excited
phonons have destroyed the periodicity. Crucial model features are phonons coupling to the hopping
matrix elements and a unit cell with several atoms. We demonstrate the difference to a model of alkali-
doped C60 with coupling to the level positions, for which there is no saturation.

DOI: 10.1103/PhysRevLett.87.266601 PACS numbers: 72.10.Bg
In a metal, the electrical resistivity r grows with the
temperature T due to the increased scattering of the elec-
trons by phonons. Typically, r�T� � T for large T . For
some metals with a very large r, however, the resistiv-
ity saturates [1–3], i.e., it grows very slowly with T for
large T . The resistivity is often described in a semiclas-
sical (Boltzmann) picture, where an electron, on the aver-
age, travels a mean-free path l before it is scattered. The
resistivity is inversely proportional to l. Typically, l ¿ d,
where d is the atomic separation. For systems with re-
sistivity saturation, however, l becomes comparable to d.
Work in the 1970s suggested that resistivity saturation oc-
curs universally when l � d, the Ioffe-Regel condition [4],
providing an upper limit to the large T resistivity of met-
als. Later work has, however, found exceptions, such as
alkali-doped fullerenes [5,6].

Intuitively, resistivity saturation seems natural. One
might expect that at the worst, an electron could be scat-
tered at each atom, leading to l � d. Such a semiclassical
picture, however, breaks down when l � d [7], and it is
contradicted by the lack of saturation for fullerenes. Sev-
eral theories of the saturation have been presented, usually
based on generalizations of the semiclassical Boltzmann
theory, but none has been generally accepted [8–10].

The Bloch-Boltzmann theory starts from a periodic
system and treats the scattering mechanisms as small
perturbations. Here we consider the opposite limit, where
thermally excited phonons have removed all effects of
periodicity. In this limit, charge conservation naturally
leads to saturation for systems with several atoms per unit
cell and strong electron-phonon coupling, in particular for
systems where the phonons couple to the hopping matrix
elements. We show that this happens to occur when
l � d. This does not happen, however, for a model of
alkali-doped C60, where the phonons couple to the level
positions. We first use an essentially exact quantum Monte
Carlo (QMC) calculation to demonstrate saturation in our
model. We then introduce a method where the phonons
are treated semiclassically and the electrons quantum
mechanically, justifying the method by comparing with
the QMC results. This method is sufficiently simple to
allow for an interpretation of the results.
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Saturation is clearly observed for, e.g., A15 compounds,
such as Nb3Sb [1], while Nb metal shows weak saturation
at large T [11]. We study a model Nb�

3 of Nb3Sb, where
the Nb atoms have the same positions as in Nb3Sb, but
the Sb atoms are neglected [12]. This is compared with a
model of Nb. We consider a cluster of N atoms, placed on
A15 �Nb�

3� or bcc (Nb) lattices with the lattice parameters
5.17 Å �Nb�

3� or 3.28 Å (Nb).
We study the scattering of the electrons from phonons.

Each atom is assumed to have vibrations in the three co-
ordinate directions, described by Einstein phonons. The
phonon energy, vph � 14 meV, is obtained from an av-
erage over the phonons of Nb [13]. For each Nb atom
we include the fivefold degenerate �n � 5� d orbital. The
hopping matrix elements between the orbitals are obtained
from Harrison [14], using a power dependence on the
atomic distance d ��1�dm�. We use m � 3.6 more ap-
propriate for Nb [15] than m � 5 used by Harrison. To
avoid divergencies for very small d, 1�dm is replaced by
1��dm 1 am�, with a � 2 Å. The atomic vibrations modu-
late the hopping matrix elements, both due to the changes
of the atomic distances and the relative movements of the
orbital lobes. We neglect the influence of the vibrations
on the level energies as well as the Coulomb interaction
between the electrons. To obtain the resistivity, we calcu-
late the current-current correlation function. The current
operator j is obtained by using charge and current conser-
vation. Thus the matrix elements between orbitals n and
m on sites Rn and Rm are

jnm � ie�Rn 2 Rm�tnm , (1)

where tnm are the corresponding hopping matrix elements.
This model can be solved essentially exactly by using

a determinantal QMC method [16], treating the phonons
quantum mechanically. For the models studied here, the
QMC method has no “sign problem.” The calculated
correlation function (for imaginary time) therefore has
only (small) statistical errors. We use a maximum entropy
method [17] to obtain the optical conductivity s�v�
on the real frequency axis. The resistivity r is then
1�s�0�.
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The left inset of Fig. 1 shows the QMC result (circles)
for r�T� of the Nb�

3 model. We are particularly interested
in the large T behavior, which is also the limit where
the QMC calculation can be performed with a reasonable
effort. The large T result extrapolates to a substantial
nonzero value. However, since the resistivity of the Nb�

3
model must go to zero for T � 0, the QMC calculation
clearly shows that the model leads to a drastic reduction of
the slope of the r�T� curve for large T , usually referred to
as resistivity saturation.

To analyze the results, we treat the phonons (semi)clas-
sically. The atomic displacements due to the phonons are
chosen randomly according to a Gaussian distribution, de-
termined from the average number of phonons at that tem-
perature. For given “frozen” displacements, we calculate
the hopping and current matrix elements. The eigenvalues
´i and eigenvectors ji� of the resulting Hamiltonian are
calculated. For an isotropic system, the optical conductiv-
ity is then given by

s�v� �
1
v

X
ij

j�ij jx j j�j2� fi 2 fj�d�h̄v 2 ´j 1 ´i� ,

(2)

where fi is the Fermi function for the state i.
The left inset of Fig. 1 shows that this approach (broken

line) agrees quite well with the QMC calculation for large
T , the temperature range we are interested in, and we
expect the semiclassical calculation to remain accurate for
T ¿ vph �� 0.014 eV�. We can therefore interpret the
results by analyzing the simpler semiclassical calculation.
We observe that this model differs qualitatively from the
(Ziman solution [18]) of the Boltzmann equation, in which
r�T � � T for large T . In the Boltzmann equation the
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FIG. 1. Resistivity r�T � as a function of temperature T . The
main figure shows results for Nb�

3 (N � 648 atoms) and the
right inset for Nb (N � 640 atoms). In both cases the phonons
are treated semiclassically. The small T [Eq. (7)] (chain curves)
and the large T [Eq. (5)] (broken curves) limits of r�T � are
also shown. The left inset compares the semiclassical [broken
�N � 36� and full �N � 648� curves] and quantum Monte Carlo
(circles, N � 36) calculations for Nb�

3.
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electrons are treated semiclassically, while here they are
treated quantum mechanically.

Figure 1 shows that there is a very clear saturation for
Nb�

3, while for Nb (right inset) there is only weak satura-
tion at large T , in agreement with experiment [1,11].

We now discuss this saturation. Figure 2a shows s�v�
for Nb�

3 in the semiclassical theory. For small T , there is
a narrow Drude peak at v � 0, which is smeared out for
large T . Then s�v � 0� drops correspondingly. For v .

W , s�v� remains zero (apart from a slight broadening
introduced in the calculation), where W is the bandwidth,
since there are no excitations for v . W .

The Drude peak is due to intraband transitions between
states with similar values of the wave vector k. As T is
raised and the vibrations of the atoms are increased, the
states loose their well-defined k and band index labels. To
illustrate this, we decompose a state ji� at a finite T in
the T � 0 states with given k vectors. The corresponding
weights are labeled c�ik�. We define D as the average of
D�i� over all states i, where

D�i� � nk

X
k

c�ik�2, (3)

and nk � 256 is the number of allowed k vectors for the
systems studied. If each state has nk�m k components
with equal weights, D � m. If periodicity is completely
lost, D � 1, and if each state has only one k component,
D � nk�� 256� [19]. D is shown in Fig. 3. It illustrates
how the effects of periodicity are lost very quickly for Nb�

3
on a temperature scale of just a few hundred K.

For a large T , the �q ! 0� current operator then couples
all states to each other. We now make the assumption that
at large T the coupling between all states is equally strong
[20]. This is the opposite limit to the Boltzmann treat-
ment, where k is assumed to be a good quantum num-
ber. We replace a current matrix element in Eq. (2) by
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FIG. 2. Optical conductivity as a function of frequency v for
the (a) A15 and (b) fullerene models in the semiclassical calcu-
lation. The frequency has been scaled by the T � 0 bandwidth
W . (a) also shows (broken curve) the result of approximating
all current matrix elements by their average.
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FIG. 3. The measure D [Eq. (3)] of the amount of momentum
conservation as a function of T for Nb�

3 (full line) and Nb
(broken line). The horizontal line represents a complete loss
of momentum conservation.

its average j jav
x j2 over all transitions. Using charge and

current conservation [Eq. (1)], we obtain

j jav
x j2 �

e2d2

3N2n2

X
nm

jtnmj
2 �

e2d2

3Nn2 �´2� , (4)

where n is the orbital degeneracy, �´2� is the second mo-
ment of the density of states N�´� per atom, and d is a
typical atomic separation. We assume some generic shape
of N �´�. Since we know its second moment, we can then
relate N�´� to the jav

x . Using this relation, we can calculate
s�v�, shown by the broken curve in Fig. 2a. A compari-
sion with the full calculation shows that this approximation
becomes rather accurate already at a moderate T . We find
that s�0� � d2�V, where V is the volume per atom. Us-
ing the T � 0 nearest neighbor distance for d, we obtain

r � A
d

n
. (5)

A depends on the precise assumptions of the model, but
it is �0.2 mVcm if d is expressed in Å. Assuming a
semielliptical density of states �

p
�W�2�2 2 ´2 and band

filling 0.4, we find A � 0.27 and 0.15 mVcm for the A15
and bcc lattices, respectively. This is shown by the broken
horizontal lines in Fig. 1. Given the simple assumptions,
the agreement with the full semiclassical calculations at
large T is surprisingly good. The corresponding apparent
mean-free path is

l � cn1�3d . (6)

With the assumptions above, we obtain c � 0.5 and c �
0.6 for the A15 and bcc lattices, respectively. Saturation
therefore happens roughly when the Ioffe-Regel condition
is satisfied, as might have been expected on dimensional
grounds.

The derivation of Eq. (6) uses a quantum-mechanical
treatment of the electrons. It explains why metals with a
large resistivity usually show saturation, and why it hap-
pens when l � d.

The r�T� in Eq. (5) is independent of T , while Fig. 1
shows a weak T dependence, even after saturation. This
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is partly due to the T dependence of the Fermi functions
in Eq. (2), which were approximated by u functions in
the derivation above. There is also a T dependence due
to changes of the shape of the density of states as T is
increased, which was neglected above by using a “generic”
density of states. These effects are important only when
T is an appreciable fraction of the bandwidth (for realistic
values of the electron-phonon coupling).

Equations (5) and (6) are obtained by assuming that the
Drude peak has been smeared out and that s�v� is spread
out over the whole bandwidth. Both the saturation resistiv-
ity and the corresponding mean-free path are independent
of the bandwidth. A scaling of tmn by a factor a . 1 in-
creases W , and s�v� extends over a larger energy range.
At the same time, however, jav

x is increased [Eq. (1)] in
such a way that s�0� in Eq. (2) is unchanged. Charge and
current conservation therefore plays a crucial role for our
results (5), (6).

We next consider a small T �. vph�. Then [18]

r�T� � 8p2 lTkB

h̄V
2
pl

, (7)

where l is the electron-phonon coupling constant and kB

is the Boltzmann constant. Vpl is the plasma frequency

�h̄Vpl�2 �
e2

3p2

X
n

Z
Bz

d3k

∑
≠´nk

≠k

∏2

d�´nk 2 EF � ,

(8)

where ´nk is the energy of a state with the band index n
and the wave vector k and EF is the Fermi energy. Vpl
depends on the average Fermi velocity.

The straight line given by Eq. (7) (chain lines in Fig. 1),
agrees well with the semiclassical calculations for small
T . Typically, this line rises so slowly that it intersects the
horizontal line of Eq. (5) well above the melting point for
the metal of interest. Then no saturation is found in the ac-
cessible temperature range. If, however, Vpl is small and
l is large, the two lines cross below the melting tempera-
ture. Saturation is then observed. An important difference
between Nb�

3 and Nb is that Nb�
3 has many rather flat

bands, due to the large unit cell [8] and many forbidden
crossings. The resulting small electron velocities lead
to a small Vpl. We find Vpl � 3.6 and 8.2 eV for Nb�

3
and Nb, respectively, which makes the slope of the line
in Eq. (7) about a factor of 5 larger for Nb�

3 than for Nb.
We find similar l’s for Nb�

3 �l � 1.0� and Nb �l � 0.9�.
More accurate estimates give Vpl � 3.4 eV �Nb3Sn�
[21] and 9.5 eV (Nb) [22] and l � 1.7 �Nb3Sn� [3] and
1.1 (Nb) [22].

It is interesting to replace the d orbitals in our Nb�
3

model by s orbitals. As before, the resistivity shows
saturation, but the saturation is less pronounced than in
Fig. 1. The saturation resistivity [Eq. (5)] is larger due to
the smaller degeneracy �n � 1�.

A very different behavior is found in the alkali-doped
fullerenes [A3C60 (A � K, Rb)], where the apparent
266601-3
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mean-free path becomes much shorter than the sepa-
rations of the C60 molecules [5,6]. This behavior was
related to the fact that the important (intramolecular)
phonons primarily couple to the C60 level energies,
instead of the hopping matrix elements [23,24]. Already
at a moderate T , the resulting fluctuations in the level
energies become comparable to the T � 0 width of the
narrow t1u band, which conducts the current. This leads
to a broadening of the t1u band and of s�v� beyond the
T � 0 bandwidth. In contrast to the case of a scaling of
the hopping parameters, discussed below Eq. (6), this is,
however, not accompanied by an increase of the current
operator. Thus s�0� is reduced, explaining the lack of
saturation. This is illustrated in Fig. 2b.

It is interesting to compare the cases when the phonons
couple to the level energies (LE coupling) and to the hop-
ping integrals (HI coupling). We have studied the case
of HI coupling in a C60 model. By assuming an unre-
alistically small phonon frequency for the intermolecular
vibrations, we can obtain the same value of l as for the
LE coupling. For the HI coupling, we then find that the
resistivity of our C60 model shows saturation. We have
also considered LE coupling in the Nb�

3 model. The re-
sulting resistivity shows a change in slope, somewhat sim-
ilar to Fig. 1, but with a larger slope for large T than in
Fig. 1. These results illustrate that it is possible to obtain
saturation with LE coupling, but that HI coupling is more
appropriate for describing saturation.

Our semiclassical treatment of the two models is closely
related to conduction in disordered systems with diagonal
(DD) or (ODD) off-diagonal disorder. While DD models
can give localization, no localization was found close to
the center of the band in a ODD model [26]. This is
consistent with the saturation seen in Fig. 1 for the A15
model, having ODD in the semiclassical treatment. For the
C60 model, the semiclassical treatment gives localization
for a large DD. The QMC treatment, however, takes into
account that the disorder is not static but due to thermal
fluctuations and that the scattering can be inelastic. In this
QMC treatment we find a lack of saturation, but we have
not seen signs of localization.

To summarize, guided by the loss of periodicity at large
T , we have studied the effect of replacing the current ma-
trix element by its average. Together with charge con-
servation, this leads to clear saturation in a model where
the phonons couple to the hopping matrix elements. On
the other hand, saturation does not happen in a model for
A3C60, where the phonons couple to the level energies.
The issue of saturation or not saturation is raised only for
experimentally accessible temperatures if l is large and
Vpl is small. This is favored by the relatively flat bands
for Nb�

3 (Vpl small) and by the small bandwidth for A3C60
(l large and Vpl small).
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