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A closed, self-consistent equation for the velocity autocorrelation function of a quantum liquid within
the framework of a quantum mode-coupling theory is derived. The solution of the quantum generalized
Langevin equation requires static input which is generated by an appropriate path-integral Monte Carlo
scheme. In order to assess the accuracy of our approach we have studied the self-diffusion process of
liquid para-hydrogen at two thermodynamic state points. Quantitative agreement for the self-diffusion
constant is obtained in comparison to experimental measurements and other theoretical predictions.
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One of the long-standing problems in physics is the
quantum mechanical treatment of dynamical properties in
highly quantum liquids. The direct calculation of time cor-
relation functions in these condensed phase systems is an
extremely difficult task. This has led to a variety of dif-
ferent techniques to include the effects of quantum fluctu-
ations on the dynamic response in liquids. At the present
time, one of the viable alternatives to the exact quantum
mechanical solution is the use of techniques that are “semi-
classical” in nature, namely, the dynamic response is ob-
tained with the aid of classical trajectories [1]. While such
techniques appear promising, technical issues have pre-
vented their use in describing dynamics in realistic quan-
tum liquids. Another class of methods that has been used
with success in a variety of problems involves sophisticated
numerical analytical continuation of exact imaginary-time
path-integral Monte Carlo (PIMC) data [2]. The applica-
tion of these methods to the understanding of dynamical
properties in quantum liquids has so far not been com-
pletely successful [3.4].

In this Letter we develop a new approach to study dynam-
ical correlations in quantum liquids within the framework
of a quantum mode-coupling theory [5], and focus on the
study of transport properties in these systems. Our ap-
proach draws upon the pioneering work of Gotze and Liicke
[6,7], and Sjogren and Sjolander [§—10]. We first derive a
closed, self-consistent nonlinear integro-differential equa-
tion for the velocity autocorrelation function. The solution
to this equation requires static input which is generated by
an appropriate path-integral Monte Carlo scheme [11]. The
method is then applied to study the self-diffusion process of
liquid para-hydrogen at two thermodynamic state points,
and comparison is made with experimental measurements
[12] and other theoretical predictions [13].

The derivation of the quantum generalized Langevin
equation (QGLE) for the velocity autocorrelation function
(VACF) follows from the work of Zwanzig [14] and Mori
[15,16]. We begin with the definition of the projection op-
erator, P, [17]:
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is the Kubo transform [18] of the velocity operator v =
p/m of a representative liquid particle along a chosen
Cartesian direction, H is the Hamiltonian of the system,
B = K%T, and (---) denote an ensemble average. In the
above equations the notation « implies that the quantity
under consideration involves the Kubo transform given by
Eq. (2). Using the above definitions and following the
standard procedure [19] it is straightforward to show that
the QGLE for the Kubo transform of the VACF, C¥(t) =
(vv, (1)), is given by the exact equation
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CX(1) = —f dt' K*(t!)CK(t — 1), (3)
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where C,’j(t) = 9C¥(r)/dt, and the Kubo transform of the
memory kernel, K, (z), is given by the exact equation

K*(1) = (0, e/ 17PIED, ). )
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In the above equation, £ = %[H ,] is the quantum Liou-
ville operator.

The above expression for the memory function com-
bined with Eq. (3) is simply another way of rephrasing the
quantum Wigner-Liouville equation for the VACF. The
difficulty of numerically solving the Wigner-Liouville
equation for the positions and velocities in a many-body
system is shifted to the difficulty of evaluating the
memory kernel. To circumvent this difficulty we use an
approximate closure for the memory kernel of the form
K*(t) = Kf (1) + K¥(¢). This form of mode-coupling
theory [20] has been used successfully in the study of a
certain class of classical dense fluids with remarkable suc-
cess in predicting various dynamical correlations in these
systems [19,21,22]. Its quantum generalization has been
suggested for the application of density fluctuations in
superfluid liquid helium [6,7] and in liquid para-hydrogen
[5]. We note that the above formal expression for the
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QGLE of the VACF is very similar to its classical counter-
part [19]. However, Eq. (3) describes the time evolution
of the Kubo transform of the VACF and therefore is a
fully quantum mechanical description. The classical limit
of Eq. (3) is recovered when /i — 0.

To obtain the “quantum binary” portion, K £ (¢), and the
quantum mode-coupling portion, K¥(z), of the memory
kernel we follow the standard classical procedure, with the
projection operator and memory kernel given by Egs. (1)
and (4), respectively. The fast decaying binary term is
obtained from a short-time expansion of the exact Kubo
transform of the memory function, and is given by

KE() = K§ (1)), )

where the lifetime 7 = [—K*(0)/2K*(0)]"/2, K§ =
(0, 0.0)/(v,v), and K = —(0, 9,0)/(v,vic) + [K(0).
The shape of the function f(x) is taken to be a Gaussian
exp(—x?) or sech?(x). Both forms have been used in the
study of classical liquids [19], and are exact to second
order in time. We have found that both forms give nearly
identical results, signifying that the theory presented here
is robust.

The slow decaying mode-coupling term is approximated
by

KX (1) ~ f dq V< (@)

F$y(q,0)]F"(q,1).  (6)

In the above equation, n is the number density, F*(q,t)
is the Kubo transform of the intermediate scattering func-
tion [5], and F(g,t) is the Kubo transform of the self-
intermediate scattering function. The binary term of the
Kubo transform of the self-intermediate scattering func-
tion, Fy (g, 1), is obtained from a short-time expansion of
F¥(g,t) similar to the expansion used for the binary term
of K*(z). The vertex in Eq. (6) is given by

b@ve)
NF¥(q,0)F*(q,0)”

where N is the number of particles, and b(q) =
Z]]-V#l /4 ("1715) i related to the single-particle and number-
variable density operators.

To obtain both portions of the memory kernel, one re-
quires as input the values of the memory function at t = 0,
its second time derivative at t = 0, and the vertex. These
properties can be obtained from static equilibrium input;
however, they involve thermal averages over operators that
combine positions and momenta of all particles. The ap-
proach we adopt in this paper to calculate these averages
is based on a recent method that we have developed which
uses a path-integral Monte Carlo technique and is suitable
for thermal averages of such operators for a many-body
system [11].

In addition to these static properties, one also requires
the Kubo transforms of the time-dependent intermediate
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and self-intermediate scattering functions. The Kubo
transform of the intermediate scattering function, F*(q, ),
can be obtained from a similar approach, namely, from a
quantum mode-coupling theory combined with the PIMC
method [5]. However, in a recent paper [5] we have shown
that a simpler approach, the quantum viscoelastic model
(QVM), provides semiquantitative results for F*(g, t), and
therefore the QVM is the approach we adopt here. The
self-intermediate scattering function cannot be obtained
from the viscoelastic model, since this approach is known
to fail even for classical liquids. We therefore assume a
Gaussian approximation for the Kubo transform of the
self-intermediate scattering function [23] given by

FX(q,t) = F¥(q,0 exp{ f dr' Ci(¢) (¢t — t)]'
(3)

where the Kubo transform F(g,0) can be obtained from
a static equilibrium PIMC method.

To assess the accuracy of the above outlined approach
we have studied the self-diffusion of liquid para-hydrogen
at two thermodynamic points: a liquid near the triple point
at T = 14 K and p = 0.0235 A73, and a high tempera-
ture liquid at 7 = 25 K and p = 0.0190 A3 (the density
for both state points is the average density at zero pres-
sure [24]). This system has been studied both experimen-
tally [12] and theoretically using the path-integral centroid
molecular dynamics (PICMD) method [13], and thus com-
parison with the present approach can be made.

In order to obtain the static input required by the
quantum mode-coupling theory we have performed PIMC
simulations of liquid para-hydrogen, where the entire H,
molecule is described as a spherical particle, so the poten-
tial depends only on the radial distance between particles.
The simulations were done using a NVT ensemble with
108 particles interacting via the Silvera-Goldman potential
[25]. The staging algorithm [26] for Monte Carlo chain
moves was employed to compute the numerically exact
Kubo-transformed static input. 2 X 107 Monte Carlo
moves were made, with an acceptance ratio of approxi-
mately 0.35. The static input generated from the PIMC
simulations combined with the Kubo transform of the
intermediate scattering function obtained from the QVM
[5] was then used to obtain the memory kernel for the
VACF. Using Fy(g,t) as an initial guess for the Kubo
transform of the self-intermediate scattering function, we
have solved Egs. (3), (5), (6), and (8) self-consistently
to obtain the Kubo transform of the VACF. Typically,
less than ten iterations were required to converge the
self-consistent cycles.

In Fig. 1 we plot the normalized Kubo transform of the
VACF and the VACEF itself for liquid para-hydrogen at the
two thermodynamic points considered in this work. The
time-dependent VACF was generated from the frequency-
dependent diffusion contestant, D(w), which was obtained
using the standard relation in frequency space:
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FIG. 1. A plot of the normalized time-dependent Kubo trans-

form of the velocity autocorrelation function (solid line) and the
real and imaginary parts of the normalized velocity autocorre-
lation function (dashed and dotted lines, respectively) for liquid
para-hydrogen at T = 14 K, p = 0.0235 A~ (upper panel)
and T = 25 K, p = 0.0190 A~ (lower panel).
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D(w) = > [coth<7> + I}D"(w), 9)

where D*(w) is the Kubo transform of the frequency-
dependent diffusion constant given by the Fourier trans-
form of CX(z). The time scale for the initial relaxation
of the VACEF is approximately 0.2—0.25 ps for both ther-
modynamic points, while the classical result (not shown)
predicts a decay on a much faster time scale [27].

While it is beyond the scope of this Letter to give a
detailed comparison between the quantum mode-coupling
approach and other methods [28,29], it should be noted
that the agreement between the quantum mode-coupling
approach and the analytic continuation method is remark-
able [28], while there are very small differences between
the VACF obtained using our approach and the PICMD
method [13]. The good agreement between these different
methods obtained for the VACF is a strong support for the
robustness and accuracy of this theory.

In Fig. 2 we plot the Kubo transform of the memory
kernel of the VACF for the two thermodynamic points
studied in this work. At the higher temperature point the
contribution of the mode-coupling portion to the memory
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kernel is negligible, and the VACF can be computed using
only the fast binary part. This is not the case for the lower
temperature studied, and the slower mode-coupling portion
of the memory kernel significantly influences the decay of
the VACF. Note that the area under the fast binary portion
is comparable to that of the slow mode-coupling portion
for the lower temperature case.

The frequency-dependent diffusion constant given by
Eq. (9) is shown in Fig. 3. The values of the self-diffusion
constants which were obtained from the Green-Kubo re-
lation are 0.30 A% ps~! and 1.69 A2ps~! for T = 14 K,
p=00235A3 and T=25K, p=0.0190A73,
respectively. These results are in good agreement with
the experimental results (0.4 A2ps~' and 1.6 A2ps™!)
[12] and with the full PICMD results (0.32 A? ps_1 and
1.54 A2ps™!) [13]. It should be emphasized that the
mode-coupling portion of the memory kernel is essential
for obtaining the self-diffusion constant at the lower
temperature point that is in quantitative agreement with
the experimental value.

In conclusion, we have developed a quantum mode-
coupling approach to study the self-diffusion process in
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FIG. 2. A plot of the normalized time-dependent Kubo trans-
form of the memory kernel for the velocity autocorrelation func-
tion for liquid para-hydrogen at T = 14 K, p = 0.0235 A3
(upper panel) and 7 = 25 K, p = 0.0190 A=3 (lower panel).
The solid, dashed, and dotted curves are for the total mem-

ory kernel, the fast binary portion Kf(¢), and the slow mode-
coupling portion KX(t), respectively.
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FIG. 3. A plot of the frequency-dependent diffusion constant

for liquid para-hydrogen at T = 14 K, p = 0.0235 A3 (solid
line) and T = 25 K, p = 0.0190 A~3 (dashed line).

quantum liquids. Our approach does not rely on computing
dynamical trajectories of any kind. The computation of
the velocity time correlation function is accomplished by
augmenting the exact (quantum) generalized Langevin
equation for the Kubo transform of this correlation func-
tion with the exact static structural input generated from
PIMC simulations, and a suitable approximation to the
memory function. We applied our approach to study the
self-diffusion of liquid para-hydrogen at two different
thermodynamic state points. We find that, at the higher
temperature—lower density, the memory function is well
approximated by the binary portion, while, at the lower
temperature—higher density, the mode-coupling portion
of the memory kernel is very important. By using the
Green-Kubo relation, we have obtained the values of the
self-diffusion constant, and the results are in very good
agreement with the experimental observations and with
other theoretical predictions. We find that the self-diffusion
process of liquid para-hydrogen is strongly determined by
a quantum-dynamical process.

The method developed here is in no way confined to the
case of para-hydrogen, and should be extremely useful in
general for the difficult problem of computation of dynam-
ical observables in quantum liquids.
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