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In a variety of systems which exhibit aging, the two-time response function scales as R(z,s) =
s7179f(t/s). We argue that dynamical scaling can be extended towards conformal invariance, thus
obtaining the explicit form of the scaling function f. This quantitative prediction is confirmed in several
spin systems, both for T < T, (phase ordering) and T = T, (nonequilibrium critical dynamics). The 2D
and 3D Ising models with Glauber dynamics are studied numerically, while exact results are available
for the spherical model with a nonconserved order parameter, both for short-ranged and long-ranged
interactions, as well as for the mean-field spherical spin glass.
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Aging phenomena are observed in a broad variety of
systems with slow relaxation dynamics [1]. Aging be-
havior is known to be more fully revealed by two-time
quantities, rather than by one-time quantities (see [2,3] for
reviews). The most commonly studied two-time quanti-
ties are the correlation function C(z,s) = (P (t)p(s)) and
the response function R(z,s) = 8{(¢(¢))/Sh(s), where ¢
is the order-parameter field at some point, and / is the con-
jugate local magnetic field, while s is the waiting time and
t is the observation time.

Consider for definiteness, instead of a genuine glassy
system, the situation of a ferromagnetic model, evolving
at fixed temperature 7 from a disordered initial state. In
the high-temperature phase (T > T,), the relaxation time
is small, so that the system relaxes rapidly to equilibrium,
where C(7) and R(7) are time-translation invariant (they
depend only on the difference 7 = ¢ — s) and obey the
fluctuation-dissipation theorem: TR(7) = —dC(7)/dT.
In the low-temperature phase (T < T.), where coarsening
takes place, both C(z, s) and R(z, s) depend nontrivially on
the ratio x = t/s in the self-similar regime of phase or-
dering [4]. Similar features are also observed in the late
stages of critical dynamics (T = T.) [5—8]. The distance
from equilibrium of an aging system is usually character-
ized by the fluctuation-dissipation ratio X(z, s) [2,3,9,10],
such that TR(zt,s) = X(t,5)0C(t,s)/9s.

In the scaling regime where s and 7 = ¢ — s are simul-
taneously much larger than the microscopic time scale (set
to unity), the scaling laws

Cl(t,s) = s PF(t)s), R(t,s) = s '79f(t/s) (1)

are found to hold for a broad range of models [2—4]. More-
over, for x > 1, i.e,, | < 5 < ¢, both scaling functions
usually fall off as

Fx) ~ fx) ~ x5, 0
where z is the dynamic critical exponent and A is the auto-
correlation exponent [11]. For a ferromagnetic model, with
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scalar nonconserved order parameter, (1) holds at criti-
cality (T = T,) [5,8], with a = b =28/(vz) = (d —
2 + m)/z, where B, v, m are static exponents, while
z is known from equilibrium critical dynamics. In the
phase-ordering regime (T < T.), (1) holds only in the ag-
ing regime, where C(z,s) decays from its plateau value
gEA = ng to zero (Meq is the spontaneous magnetiza-
tion). One has b = 0 and F(1) = gga. There seems to
be no general result for the response exponent: a = 1/2
for the Glauber-Ising model, both in one dimension [6,7]
and in higher dimensions [12], while @ = d/2 — 1 for the
spherical model in dimension d > 2 [8,13,14]. We stress
that the specific scaling forms (1) and (2) hold only for a
completely disordered initial state. If there are correlations
in the initial state, similar but different scaling forms hold
[15,16].

At present, there is no general principle to predict the
form of correlation and response functions in nonequi-
librium systems. On the other hand, for an equilibrium
critical point (where formally z = 1), scale invariance
can be extended to conformal invariance [17—19]. Scale
invariance implies that correlators transform covariantly
under dilatations, i.e., scale transformations which are spa-
tially uniform. Conformal transformations are local scale
transformations with a position-dependent dilatation fac-
tor b = b(r), but such that angles are conserved. This is
already enough to fix the form of an equilibrium correla-
tor at criticality in any space dimension. Furthermore, 2D
conformal invariance yields exact values for the entire set
of critical exponents, the exact form of all n-point correla-
tors, a classification of the universality classes, and much
more [20] (see [18,19] for reviews).

Is a similar extension of the scale invariance of (1) also
available for nonequilibrium systems? Indeed, we present
evidence that this might be so. First, we argue [21] that
the two-time response function R(¢,s) should transform
covariantly under the action of conformal transformations
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in time. This assumption is then shown to imply the scaling
form

R(t,s) = ro(t/s)' " 7Me(e — 5)7' 7,
ie, f(x)= r0x1+“_)‘/z(x -1 te

The scaling function f(x) is thus entirely fixed, up to the
normalization constant ro, by the two exponents a and
A/z entering (1) and (2). This explicit scaling form (3)
of the response function is the main result of this Letter.
It is expected to hold throughout the aging regime, for
any value of the ratio x = ¢/s > 1. The power law (2)
is recovered for well-separated times (x > 1) [22].

The prediction (3) will be corroborated by numerical
simulations in the 2D and the 3D Ising model with Glauber
dynamics. In addition, exact results for the spherical model
with a nonconserved order parameter (including spatially
long-ranged interactions and/or quenched disorder) also
reproduce (3) [5,8,10,13,15,23,24]. This confirmation pro-
vides, for the first time, evidence for conformal invariance
in nonequilibrium and aging phenomena.

We now sketch the line of reasoning leading to (3). The
full calculation will be given elsewhere [21]. To begin,
we ask, “What space-time symmetries are consistent with
dynamical scale invariance ¢ — b*t, r — br, where 7 is
the dynamical exponent [21,25]?” A similar question has
already been successfully raised for equilibrium systems
with strongly anisotropic scaling [25,26]. While in equi-
librium systems the correlation functions (of quasiprimary
operators [20]) are expected to transform in a simple way,
for nonequilibrium systems it is rather the response func-
tions which will take this role, as argued long ago [27].
We expect the requested extension of dynamical scaling to
contain the Mobius transformations of time: ¢ — ' =
(at + B)/(yt + 8),withad — By = 1, since these oc-
cur in the two known special cases, namely, conformal in-
variance for z = 1 and Schrddinger invariance for z = 2.
It turns out that this condition is already sufficient to fix
the form of the infinitesimal generators. In the one space
dimension, to which we restrict ourselves for notational
simplicity, it can be shown that for nonequilibrium sys-
tems one may write [21]

X_| = =0, Xo = —td; — (l/z)r(?r,
X, = —1%9, — (2/)trd, — ,Br28%_z,

3

“

where B is a constant related to “mass” [21,25]. The gen-
erators X, satisfy the commutation relations [X,, X,,] =
(n — m)X,+m (With n,m € {—1,0, 1}) of the Lie algebra
of the conformal group.

Equation (4) forms the basis for the derivation of (3).
Time translations are generated by X_;. In order to
make the above construction applicable to nonequilibrium
situations, we must discard the latter and require only
covariance under the subalgebra S generated by X
and X; (see [23]). It is clear from the form of the
generators that the initial line ¢+ = 0 is invariant under the

265701-2

action of S. Now, consider a general response function
G = (¢1(t1,r1)P(t2,r2)), where the field ¢; is charac-
terized by its scaling dimension x; and mass S;, and the
response field ¢, (see, e.g., [17]) has scaling dimension
x, and mass B;. Then the covariance of G under the local
scale transformations in S is expressed by the conditions
211 XoG = ({1 + H)G,  XiG = 24t + 24H10)G,
where ¢; = x;/z (i = 1,2). Moreover, we require spatial
translation invariance; thus G = G(t, t;r; — rp). This
is always satisfied if B; + (—1)>"2B, = 0. We can now
set r = r; — rp, = 0 and obtain the response function
G = R(t1,t;). Then the generators (4) reduce to the
standard conformal generators (see, e.g., [18—20]), and R
satisfies the differential equations

(ta, + s0s + & + H)R(t,s) =0,
(129, + 5?9, + 24t + 269)R(t,s) =03

hence R(z,s) = ro(t/s)2 % (t — s)"%%. An identifica-
tion of exponents with (1) and (2) yields (3).

The prediction (3) will now be checked against results
for various model systems. We begin with a novel numeri-
cal investigation of the Ising model, on square or cubic lat-
tices, with periodic boundary conditions, and Glauber or
heat-bath dynamics. Because the instantaneous response
function R(z,s) is too noisy to be measured in a simula-
tion, we consider instead the integrated response function
[8,28]

plts) =T fo " duR(w) = (T/WM(t, ), (6)

&)

where Mtrwm(f,s) is the thermoremanent magnetization,
i.e., the magnetization of the system at observation time
¢t obtained after applying locally a small magnetic field
h between the initial time ¢ = 0 and the waiting time
t = s. This quantity can be readily measured, either in
TRM experiments or in numerical simulations [28]. The
data shown in Figs. 1 and 2 have been obtained in this
way and averaged over at least 1000 different realizations
of systems with 300 X 300 spins in 2D and 50 X 50 X 50
spins in 3D. Larger systems were also simulated, in order
to check for finite-size effects. Table I contains the numer-
ical values of exponents used in the subsequent analysis.
Figure 1 displays our results for p(z,s) in the scaling
regime at criticality (data corresponding to 1 ~ 7 < s
have been discarded). From (1) we expect a data collapse
if s%p(t,s) is plotted against x = t/s, and this is indeed
the case. Having thus confirmed the expected scaling, we
can compare with the prediction (3). We find complete
quantitative agreement, after adjusting only one parameter,
the overall normalization constant ry. Figure 2 shows our
results in 2D and 3D, in the scaling regime and for a
fixed temperature below T.. As a = 1/2 [12], we expect
that s/2p (1, s) depends only on t/s. This is indeed the
case in 3D, but for 2D the situation is more complicated.
Analytical calculations in the spirit of the Ohta-Jasnow-
Kawasaki approximation [4] reveal the presence of extra
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FIG. 1. Scaling of the integrated response function p for
(a) the 2D and (b) the 3D Glauber-Ising model at criticality
(T = T,.). The symbols correspond to different waiting times.
The full curve is the conformal invariance prediction for p,
obtained by integrating (3).

logarithms: p(z,s) = s~ "/2Insf(¢/s) [12]. Logarithmic
corrections to scaling are not so rare, even in the realm of
2D equilibrium conformal theories [19,29]. We therefore
propose the heuristic ansatz

plt,s) = s_l/z(ro + rilns)E(z/s), @)

where rg, ri are nonuniversal constants, and E(x) is a
scaling function. It is apparent from Fig. 2(a) that we
thus obtain a satisfactory scaling. We have checked that
the same scaling form holds in the entire low-temperature
phase, where rg, r1 depend on 7. We again find complete
agreement between the form of the scaling function E(x)
and the prediction (3).

We now turn to confirmations of (3) by means of avail-
able analytical results. For the ferromagnetic spherical
model [8], which can alternatively be described in terms
of a continuum field theory [5,15], the scaling expression
of the response function has been derived in any dimen-
sion d > 2. It reads R(t,s) =~ (4rs)~/2f(x), where the
scaling function is, in the ordered phase (T < T.) [8,15],

fO) =2 = 72, @®)
and at the critical point (T = T,) [5,8],
TABLE I. Critical temperature and exponents of the 2D and

3D Glauber-Ising model, both in the phase-ordering regime
(T = 0) and for critical dynamics (T = T.).

2D 3D
T, 2.2692 45115
z T=0 2 2
T=T, 2.17 2.04
A T =0 1.25 1.50
T =T, 1.59 278
B/v T=T. 1/8 0.517
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xR - 1) 2 <d < 4).
ft) = {(x - 1))6—61/2 4 < d).

These expressions are in full agreement with (3). The
second expression of (9), corresponding to the mean-field
situation, coincides with the result for a free (Gaussian)
field [10], as could be expected.

The spherical model has the peculiarity that the dynam-
ical exponent z = 2 throughout. In that case, the response
functions are expected to transform covariantly under the
Schrodinger group [23]. The full space-time dependent re-
sponse reads

(0P s.m2) = Rt s)exp -

®

ﬂ (r; — 1’2)2>
2 t—s )
(10)

with R(z,s) given by (3), and where the mass M is a
constant [in (4), B = M /2 for z = 2]. A comparison
with the exact spherical model results, both at and below
T, [5,15], also permits us to confirm this fully [19,23].

Recently, correlation and response functions have been
calculated exactly for the spherical model with long-range
interactions of the form J(r) ~ |r| "¢~ 7 [24]. For d > 2
and o > 2, the spherical model with short-ranged inter-
actions, discussed above, is recovered. On the other hand,
ford >2and 0 < o <2,ord =2and0 < o < d, the
dynamical exponent reads z = o below criticality, while
the response function scales as [24]

R(t,s) = ro(t/s)Y )t — 5)~4/7, (1)

which again agrees with (3). This example illustrates that
spatially long-ranged interactions need not destroy confor-
mal invariance in nonequilibrium situations, in contrast
to the situation of conformal invariance at equilibrium.
Moreover, for the mean-field spherical spin glass [13], the

0.3
—
~~~
w2
= 0.2
p—
O ~
— Ne
+ =%
< g
g (7]
s 0.1
Q
)
0.0

FIG. 2. Scaling of the integrated response function p for the
low-temperature Glauber-Ising model (a) in 2D at 7 = 1.5 and
(b)in3D at T = 3. The symbols correspond to different waiting
times. The full curves are obtained by integrating (3).
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response function reads R(¢,s) ~ (t/5)>*(t — s)7>/% in
the low-temperature aging regime. This result also agrees
with (3). It coincides with (8) for d = 3, as a consequence
of the known similarity between the 3D spherical ferro-
magnet and the mean-field spin glass [14]. Finally, note
that for the simple random walk R(z,s) = rq = const. for
t > s, see [10], which is consistent with (3) with expo-
nents @ = —1 and A/z = 0.

In conclusion, the dynamical scale invariance realized
in nonequilibrium aging phenomena apparently general-
izes towards (a subgroup of) conformal invariance. As a
first consequence, we obtained the explicit scaling expres-
sion (3) for the two-time response function R(z, s), whose
functional form depends only on the values of the expo-
nents a and A/z. Our prediction (3) has been checked
against analytical and numerical results for several spin
systems with a nonconserved order parameter. The entire
evidence available at present comes from classical systems
with a disordered initial state. Different initial conditions
may lead to a modified scaling behavior [15,16] and the ap-
plicability of conformal invariance to these remains to be
studied. The problem of identifying the full set of physi-
cal conditions on the systems which obey (3) remains open.
However, the validity of (3) might extend to a broader class
of systems than studied here, possibly including some real-
istic glassy systems. Finally, it appears that the conditions
for the applicability of conformal invariance in nonequilib-
rium situations (such as the value of z or the presence of
long-ranged interactions) are less restrictive than for con-
formal invariance at equilibrium critical points. We hope
that the ideas presented might shed some light on some of
the standing questions of aging phenomena [30].
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