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Scaling of Collisionless Forced Reconnection
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The scaling of the reconnection electric field in a collisionless plasma is determined analytically for a
model of forced reconnection. In particular, the dependence of the length of the reconnection layer on
the ion skin depth and the boundary conditions is calculated explicitly. Analytical results are tested by
Hall magnetohydrodynamics simulations.

DOI: 10.1103/PhysRevLett.87.265003 PACS numbers: 52.35.Vd, 52.30.Ex, 94.30.Kq
During the last four decades, two models of steady-
state reconnection —Sweet-Parker [1,2] and Petschek
[3]—have been the focal points of discussions on
nonlinear reconnection dynamics. Both models were
based on resistive magnetohydrodynamics (MHD). To
fix ideas, let us consider a sheared magnetic field,
B � BPx̂ 1 BT ŷ � BP0 tanh�z�a�x̂ 1 BT ŷ , where BP0
and BT are positive constants. The poloidal component of
the magnetic field, BP, changes sign across the so-called
neutral line at z � 0. In the Sweet-Parker model, as-
suming that the plasma is incompressible, steady-state
reconnection occurs in the vicinity of the neutral line
on the time scale tSP � �tAtR�1�2 � S1�2tA where
tA � a�yA � a�4pr�1�2�BP0 is the poloidal Alfvén
time, tR � 4pa2�hc2 is the resistive diffusion time, and
S � tR�tA is the Lundquist number. (Here r is the mass
density, h is the resistivity of the plasma, and c is the
speed of light.) The reconnection layer has the geometric
structure of Y points [4], and its length is of the order of
the system size. For weakly collisional systems such as
the solar corona, the Lundquist number S is typically very
large ��1012 1014� and hence, the time scale tSP is of
the order of hours. Since tSP is much too long to account
for fast events such as solar flares, Petschek proposed a
qualitatively different steady-state model which maintains
an X-point structure for all times. In contrast with the
Sweet-Parker model, Petschek’s model yields a fast recon-
nection time scale, with a weak logarithmic dependence
on S. For the high-S solar corona, the Petschek time scale
is of the order of minutes, much closer to the relevant
time scale for flares.

Since the mid-1980s, computer simulations of high-S
plasmas have shown that even if one begins with an initial
equilibrium state containing an X point that would appear
to favor Petschek, one generally ends up obtaining an ex-
tended reconnection layer with Y-point structure typical of
Sweet-Parker [5]. For high-S plasmas, this leaves us with
a quandary. Whereas the Sweet-Parker time scale is dy-
namically realizable, it is much too slow. On the other
hand, the Petschek model, which yields a faster and more
physically relevant time scale, appears not to be realizable
in the high-S regime.
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In recent years, it has become clear that a possible res-
olution of this quandary may be found by going beyond
the resistive MHD model and including collisionless ef-
fects via the generalized Ohm’s law. High-S plasmas tend
to develop thin and intense current sheets in the recon-
nection layer. As these thin current sheets become lo-
calized and intense and their width Dh falls in the range
de � c�vpe ø Dh # di � c�vpi (where vpe and vpi

are the electron and ion plasma frequencies, respectively),
we need to replace the standard Ohm’s law in resistive
MHD by the generalized Ohm’s law which can be written

E 1 v 1 B �
1
S

J 1
di

n
�J 3 B 2 bep=p� , (1)

where E is the electric field, B is the magnetic field, v is
the plasma flow velocity, J is the current density, and p
is the electron pressure (assumed to be a scalar). In (1),
we have redefined the following variables (expressed in
cgs units) to make them dimensionless: cE��Bp0VA� !
E, B�Bp0 ! B, v�VA ! v, a= ! =, 4paJ��cBp0� �
J�J0 ! J, p��n0Te� ! p, n�n0 ! n, di�a ! di ,
de�a ! de, bep � 4pn0Te�B2

p0. (Here n0 is the average
ion and electron density in a hydrogen plasma.) The
second term on the right of (1) is proportional to the Hall
current and the third to the electron pressure gradient. In
recent years, the influence of the electron pressure gradient
and Hall current on nonlinear reconnection dynamics has
been the focus of extensive research in fusion [6–12], as
well as space physics [13–22].

The main purpose of the present Letter is to present a
scaling analysis of quasisteady collisionless forced recon-
nection within the framework of the generalized Ohm’s
law (1). While our results are qualitatively consistent with
recent numerical simulations and scaling analyses, they go
well beyond presently known results. Figure 1 shows a
typical flux-surface plot from a nonlinear Hall MHD simu-
lation under quasisteady conditions, with a reconnection
layer of length � and width D. Assuming that the plasma
density is approximately constant, the inflow velocity yin,
which determines the reconnection rate, can be simply ob-
tained from mass conservation. It is given by the expres-
sion yin � �D���yout, where yout is the outflow velocity.
© 2001 The American Physical Society 265003-1
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FIG. 1. Flux surface plot on the �x, z� plane from a Hall MHD
simulation indicating schematically the width D and length � of
the reconnection layer.

On the basis of analysis and simulations, there are good
estimates for D and yout in the literature [9,16,19,22]. For
example, when the equilibrium guide field is zero, it can
be shown that D � di�

p
2 [22], while yout is equal to the

Alfvén speed in the asymptotic outflow region. However,
there is no theory that calculates the important length pa-
rameter � from first principles. While � is observed in sev-
eral simulations to be significantly smaller than the system
size, its parametric dependence on local parameters (such
as the ion skin depth) or global parameters (such as the
wave number of the boundary perturbation) is not known.
On the basis of numerical simulations, it has been claimed
[23] that the reconnection rate is a “universal constant” and
given by yin � 0.1VA, which corresponds to � � 10di . If
true, such a claim would imply that the collisionless recon-
nection rate is independent of global conditions, such as the
form and structure of the boundary perturbations. Else-
where, we have presented numerical evidence that ques-
tions this claim [22]. In this Letter, we attempt to settle
this question by determining analytically the dependency
of the parameter � on local and global parameters for a
model of forced reconnection. We also test the analytical
scaling by simulations using the University of Iowa (UI)
Hall MHD code.

To determine �, we need to represent analytically the
geometry of the reconnected flux surfaces. Since y is
an ignorable coordinate for all times, we can write BP �
=c�z, x� 3 ŷ . If reconnection is forced by a sinusoidal
perturbation of wave number k, the magnetic flux function
in a quasisteady state can be written c�z, x� � c0�z� 1

c̃�z� coskx, where c0�z� � z2�2 is the equilibrium flux
near the neutral line. We assume that the flux surface has
the geometry of an X point. In the vicinity of the X point
�x, z ø 1�, we can then write

c�x, z� �
1
2

z2 1 c̃�0�
µ
1 2

k2x2

2

∂

�
1
2

z2 1
w2

2

µ
1 2

k2x2

2

∂
, (2)
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where w is the island width, related to c̃�0� by the relation
w � ����2c̃�0����1�2.

From (1), the reconnection electric field at the inner limit
of the outer (or ideal region) is given by

≠c

≠t
� yinBR �

D

�
youtBR �

D

�
B2

R , (3)

where BR is the magnitude of the poloidal field at the inner
(outer) limit of the ideal (reconnection) region and yout �
yA � BR (in dimensionless variables). Downstream of the
reconnection layer (along x), we have

≠c

≠t
� 2yx

≠c

≠x

Ç
x���2

�
1
4

k2w2�BR . (4)

Matching (3) and (4), we obtain

� �
2
p

BRD

kw
. (5)

As demonstrated elsewhere [22], both with and without a
guide field, D ~ di, which implies that � ~ d

1�2
i .

To complete the calculations, we now need to calculate
the parametric dependencies of BR and w on boundary
conditions. For specificity, we consider an example of
forced reconnection where the equilibrium is driven by
inward flows of the form [22]

v�x, z � 6a, t� � 7ẑV �t� �1 1 coskx�

� 7ẑV0 tanh

µ
t

t

∂

3

∑
1 2 tanh

µ
t 2 t0

t

∂∏
�1 1 coskx� , (6)

imposed at the upper and lower boundaries. The impo-
sition of inward flows for a finite time (of order t0) and
their subsequent switch-off ensures that the reconnection
rate attains a maximum, and then decays in time. The
rapid turning on and switching off of the inward boundary
flows in the ideal region, where field lines are frozen in
the plasma, deform the equilibrium boundaries located at
z � 6a. The perturbed boundaries are also flux surfaces
and in the limit of large time given by

z � a 6 �1 1 coskx�
Z `

0
V�t� dt

� a 6 d0�1 1 coskx� where d0 �
Z `

0
V�t� dt .

With these boundary conditions, the perturbed flux in the
quasisteady outer region can be obtained by linearizing the
force balance condition = 3 �J 3 B� � 0. We obtain, in
the approximation d0 ø 1 [24,25],

c̃�z� � c̃�0�
∑

coshkz 2
sinh jkzj

tanhk

∏
1

d0 sinh jkzj
sinhk

. (7)

Using the results developed in [26], it is also easy to show
that BR � 2�1 1 k� sinhk�d0, which makes explicit the
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dependence of BR on boundary conditions. In what fol-
lows, we choose the dimensionless values V0 � 0.005,
t � 2, k � p�2, and t0 � 4. With these parameters, we
obtain d0 � 0.028 and BR � 0.093.

The reconnection parameter D0 is given by

D0 �
c̃ 0�z ! 01� 2 c̃ 0�z ! 02�

c̃�0�

� 2
2k

tanhk
1

2kd0

c̃�0� sinhk
. (8)

When the reconnection rate is stationary, from the condi-
tion D0 � 0, we obtain the perturbed flux

c̃�0� �
d0

coshk
. (9)

From (9) and the expression for the island width w �
�2c̃�0��1�2, we obtain

� �
2
k

s
D�k 1 sinhk�

tanhk
. (10)

In the absence of an equilibrium guide field, that is,
BT � 0, the width of the reconnection layer is estimated to
be D � di�

p
2, and the reconnection electric field is given

by [22]

Ey �
≠c

≠t
� yinBR �

diB
2
Rp

2 �
. (11)

From (10) and (11) we see that the reconnection electric
field is proportional to

p
di. Furthermore, the constant of

proportionality is not a universal constant but actually de-
termined by the boundary conditions through the parame-
ters BR , k, and d0. The same conclusion holds in the
presence of the equilibrium guide field.

Equation (11) shows that the leading-order reconnec-
tion rate is independent of resistivity, which is a weaker
dependence on resistivity than the Petschek model where
the dependence is logarithmic. This can be understood by
considering the spatial structure of the reconnection layer,
which is composed of an inner resistive region and an in-
termediate Hall region. In the Hall region Dh , jzj # di ,
we obtain [22]

≠c

≠t
� di�J 3 B�y �

di

�
bBR �

dip
2 �

B2
R , (12)

where By � BT 1 b�x, z� and b�x, z� is the component of
the guide field spontaneously generated by the Hall current.
In the resistive region jzj , Dh which supports the current
density Jy , b�x, z� tends to zero as we approach the X
point, and the resistive term dominates so that

≠c

≠t
�

Jy

S
�

BR

SDh

. (13)

Matching the resistive layer solution (13) to the Hall layer
solution (12), we obtain

Dh �
p

2 �

SdiBR
. (14)
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We thus find that the width of the current sheet in Hall
MHD reconnection scales as S21 in contrast with that in
the Sweet-Parker model where it scales as S21�2. As the
quantity SDh is independent of S to leading order, so is the
reconnection electric field ≠c�≠t. Figure 2 shows plots
of S21Jy , di�J 3 B�y , and Ey from the UI Hall MHD
code as a function of z under quasistationary conditions,
when the reconnection electric field attains its maximum
value. These plots demonstrate that while the reconnection
electric field at the X point is supported entirely by the
resisitive diffusion term, it is the Hall current term (that
matches with the resistive term) in order to support Ey

over the broader reconnection layer.
We now present numerical tests of the analytically pre-

dicted scaling Ey ~ d
1�2
i using the UI Hall MHD code. For

a number of reasons, this test is not as easy as may seem
at first glance. First, it is important to obtain numerical
results over a sufficient range of di in order to establish
scaling. Second, one expects that the agreement with ana-
lytical scaling should improve as di decreases, but this is
also the regime in which the reconnection rate decreases.
For very small values of di , the effects of numerical
diffusion can mask weak collisionless effects, making
it difficult to establish scaling. Furthermore, the system
takes much longer to work its way through transients for
smaller values of di before it can attain a quasistationary
state, and longer runs are more likely to be polluted by the
effects of numerical diffusion when collisionless effects

FIG. 2. Plots of (a) the Hall current term, (b) the resistive
diffusion term, and (c) Ey in the generalized Ohm’s law from a
Hall MHD simulation as a function of z, with the neutral line
at z � 0.
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FIG. 3. Plot of Ey in a quasistationary state as a function of

di , demonstrating that it scales as d
1�2
i . The numerical results

are represented by squares.

are weak. Keeping these caveats in mind, we present in
Fig. 3 a plot of the maximum value of Ey as a function
of di , other parameters remaining the same as given
earlier in this paper. The plot shows that the reconnection
electric field scales as

p
di , as predicted by the analytical

relations (10) and (11). In particular, for di � 0.12 and
the parameters given above we obtain D � 0.085, � �
0.76, and ≠c�≠t � 1.0 3 1023 which is slightly higher
than the numerical result ≠c�≠t � 0.74 3 1023. The
analytically predicted dependence of the reconnection
rate on the wave number of the boundary perturba-
tion is tested by varying the wave number k. For
k � p�2, p�3, and p�4, the analytical predictions
are ≠c�≠t � �1.0, 1.03, and 0.91� 3 1023 which are
also slightly higher than the numerical results given,
respectively, by ≠c�≠t � �0.74, 0.86, and 0.70� 3 1023.
Following the development in [22], these results can be
extended in a straightforward way to the case BT fi 0.
It is interesting to note that the dependence of Ey on

d
1�2
i is the same as that obtained in our earlier analytical

work on free reconnection due to the m � 1 kink-tearing
instability [7].

In conclusion, we have given a scaling analysis of forced
reconnection within the framework of Hall MHD when re-
sistivity is the mechanism breaking field lines. In particu-
lar, we have obtained an explicit analytical expression for
the length of the reconnection layer, which is much smaller
than the system size and identified its dependencies on lo-
cal plasma parameters as well as global parameters de-
termined by boundary conditions. The analytical scaling
relations have been tested by simulations using the UI Hall
MHD code.
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