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We analyze the problem of sending, in a single transmission, the information required to specify an
orthogonal trihedron or reference frame through a quantum channel made out of N elementary spins. We
analytically obtain the optimal strategy, i.e., the best encoding state and the best measurement. For large
N , we show that the average error goes to zero linearly in 1�N . Finally, we discuss the construction of
finite optimal measurements.
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Can a system of N elementary spins be used to com-
municate in a single transmission the orientation of three
mutually orthogonal unit vectors (orthogonal trihedron)?
A positive answer would, e.g., enable two distant parties
(Alice and Bob) to establish a common reference frame us-
ing just a quantum channel. This question was addressed
20 years ago by Holevo [1], who concluded that if such
a quantum system has a well-defined total spin J the best
the sender (Alice) can attempt to achieve is to transmit the
orientation of at most one of the three vectors. There has
recently been renewed interest in this simpler, more man-
ageable, problem of sending a single direction, and refor-
mulations and extensions of the original question abound
in the literature [2–10] (related issues can also be found
in [11]). In all the cases, optimal communication in-
volves collective (entangled) measurements and an accu-
rate choice of the messenger quantum states.

In this Letter, we will be concerned with the more com-
plex problem of sending the information that specifies an
orthogonal trihedron (OT). We will demonstrate that by en-
coding the relevant geometrical information in a particular
class of states one overcomes the limitations foreseen by
Holevo and a good transmission is possible. These states
can be written as a simple superposition of states belonging
to each of the SU(2) irreducible representations that build
up the Hilbert space of the N spins. They have maxi-
mal third component of the total spin within each repre-
sentation, i.e., in standard notation they are of the formP

j Cj j j, m � j� (therefore they are not eigenstates of ei-
ther �J2 or Jz). The quality of the optimal communica-
tion strategy is shown to increase with N and in the limit
N ! ` the average error �h� goes to zero. For large N
we obtain an analytical estimate of this error, �h� / 8�N .
We would like to emphasize that despite the apparent dif-
ficulty of the problem [12], an analytical treatment is pos-
sible, which provides us with a physical insight of the
underlying quantum aspects involved in the communica-
tion process.

Let us suppose Alice has a system of N spins which
she wishes to use to tell Bob an OT, n � � �n1, �n2, �n3�. By
performing quantum measurements, Bob will be able to
0031-9007�01�87(25)�257903(4)$15.00
reconstruct this OT with some accuracy and will make the
guess n0 � � �n0

1, �n0
2, �n0

3�. The obvious parametrization of
the different OT’s is provided by the Euler angles a, b,
g, of the rotations that map n0 � � �x, �y, �z� into n and n0.
We will use g as a shorthand for the three Euler angles,
i.e., g � �a, b, g�. Following Holevo [1], we quantify the
quality of the communication strategy by evaluating the
mean value of the error (or average error) defined for each
individual measurement by

h�g, g0� �
3X

a�1

j �na 2 �n0
aj

2 �
3X

a�1

j �na�g� 2 �na�g0�j2.

(1)

Assuming the OT’s are chosen from an isotropic distribu-
tion, and denoting by pg0�g� the conditional probability of
Bob guessing n�g0� if Alice’s OT is n�g�, one has

�h� �
Z

dg
Z

dg0h�g, g0�pg0�g� , (2)

where dg is the Haar measure of the rotation group,
SU(2), which in terms of the Euler angles reads
dg � sinbdbdadg�8p2. Covariance implies that (2)
can be written as

�h� �
Z

dgh�g, 0�p0�g� , (3)

where 0 stands for �a, b, g� � �0, 0, 0�. One can easily
check that

h�g, 0� � 6 2 2 trU�1��g� , (4)

where U� j� is the SU(2) irreducible representation
of spin j, whose elements are written as �

� j�
mm0 �g� �

� j,mjU� j��g�j j, m0�. One also has t � trU�1��g� �P
m �

�1�
mm�g� � cosb 1 �1 1 cosb� cos�a 1 g�. We

see that the values of t lay in the real interval 	21, 3
.
The value t � 3 corresponds to perfect determination
of Alice’s OT and implies that h � 0. Note also that
�h� � 6 2 2�t�. Random guessing implies �t� � 0
��h� � 6�, while perfect determination of one axis and
random guessing of the remaining two yield �t� � 1
��h� � 4�.
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The most general quantum state Alice can use has the
form jA�g�� � U�g� jA�. Here U�g� �

L
j U� j� and

jA� �
X
j

jAj� �
X
j,m

Aj
mj j, m�;

X
j,m

jAj
mj

2 � 1 , (5)

where, for N even (odd), j runs from 0 �1�2� to N�2 (for
simplicity we will only consider N even unless otherwise
stated) [13], and m runs from 2j to j. jA� is a fixed
reference state associated with the OT n0.

Likewise, we may write a reference state jB� from which
we can construct the projectors of Bob’s positive operator
valued measurement (POVM). The general form of the
state is

jB� �
X
j

p
2j 1 1 jBj�; jBj� �

X
m

Bj
mj j, m� , (6)

where the square root is introduced for later convenience,
and the projectors are O�g� � U�g� jB� �BjUy�g�. (This
approach is fully covariant [1]. See [14] for a very recent
discussion on noncovariant approaches.) We will first
consider continuous POVM’s for simplicity, but finite ones
can also be constructed, as will be explained below. The
condition 1 �

R
dg O�g� requires thatX

m
jBj

mj
2 � 1, ; j , (7)

as can be easily shown with the help of the orthogonality
relationsZ

dg �
� j�
mm0 �g���l��

nn0 �g� �
djldmndm0n0

2j 1 1
. (8)

Quantum mechanics tells us that p0�g� � j�BjU�g� jA�j2,
hence we have

�t� �
Z

dgj�BjU�g� jA�j2 trU�1��g� . (9)

In terms of the components of jA� and jB� the last expres-
sion reads

�t� �
X
jl···

q
�2l 1 1� �2j 1 1� Al�

n Aj
mBl

n0B
j�
m0M

lj
nmn0m0 ,

(10)

where the sum is over all indices,

M
lj
nmn0m0 �

Z
dg trU�1��g��� j�

m0m�g���l��
n0n �g�

�
X
M

�1Mjm j ln� �1Mjm0 j ln0� , (11)

and the last terms in brackets are the usual Clebsch-Gordan
coefficients.

The optimal strategy is the one that maximizes �t�. It
is tempting to introduce Lagrange multipliers l and mj

for the normalization constrains (5) and (7), respectively,
and follow the standard maximization procedure. Ana-
lytical results along this line seem hard to obtain [12].
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We will, thus, try to develop a more physical picture of
Eqs. (9)–(11) which will lead us to a stunning simplifica-
tion of the problem.

Notice that Eqs. (9)–(11) can also be written in a com-
pact form as

�t� �
X
lj

p
�2l 1 1� �2j 1 1�

3
�BjB̃l jP1jA

jÃl� , (12)

where jAjÃl� � jAj� ≠ jÃl�, the state jÃj� is the time re-
versed of jAj�, i.e., Ã

j
m � �21�mA

j�
2m (and similarly for

jBjB̃l� and jB̃l�) and P1 is the projector over the Hilbert
space of the representation of total spin J � 1. Our aim is
to compute

�t�max � max
AB

�t�, (13)

where the maximization is over all A
j
m and B

j
m subject to

the normalization conditions in (5) and (7). The Schwarz
inequality implies

�BjB̃l jP1jA
jÃl� # kP1 jA

jÃl�k kP1 jB
jB̃l�k , (14)

where the equality holds iff

P1jA
jÃl� � mjlP1jB

jB̃l�, ; j, l . (15)

Hence, to compute �t�max, we can restrict ourselves to a
smaller parameter space, where jAj� and jBj� are con-
strained through (15). This is equivalent to consider only
states jA� such that

Aj
m � CjBj

m, with
X
j

jCj j2 � 1 , (16)

i.e., we need to consider only the set of parameters
�Cj , B

j
m�. This we can prove, e.g., by induction on j

using (15) with l � j 1 1 and starting with the trivial
case j � 0. Equation (16) is easy to understand from
the physical point of view. It just tells us that, for an
optimal communication, the messenger states jA�g�� must
be as similar as possible to the states jB�g�� on which the
measuring device projects [7]. We next substitute (16)
back into (12) to obtain

�t�max � max
BC

X
jj 0

CjM
jj 0

B Cj 0 , (17)

where

M
jj 0

B �

p
�2j 1 1� �2j0 1 1�

3
�BjB̃j 0 jP1jB

jB̃j 0� , (18)

and the maximization is over all B
j
m and Cj subject to the

normalizations (7) and (16).
Let us now discuss some properties of the matrix MB

defined by (18). We first note that MB is tridiagonal, i.e.,
M

jj 0

B � 0 if j j 2 j0j . 1, and symmetric. It is manifestly
non-negative, i.e., M

jj 0

B $ 0 for all j, j0 and, most impor-
tant, it is rotationally invariant: any reference state of the
form jB0� � U�g� jB� is equally as good as jB�.
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We next compute bounds for the diagonal �Mjj
B � and off

diagonal �Mjj11
B � entries of MB. We have

M
jj
B �

2j 1 1
3

j�BjB̃j j 10�j2 #
2j 1 1

3

√X
m0

jB
j
m0 j2

!2

3 jmax
m

� jmj 2 m j10�j2 �
j

j 1 1
� Mjj

op , (19)

where we have used rotational invariance to orient the
(real) vector P1jBjB̃j� along the z �m � 0� axis. As for
the off diagonal entries, the Schwarz inequality leads to

M
jj11
B #

p
�2j 1 1� �2j 1 3�

3

X
m0

jB
j
m0 j2

3
X
m00

jB̃
j11
m00 j2 max

m

√X
M

� jM 2 mj 1 1m j1M�2

!

�

s
2j 1 1
2j 1 3

� Mjj11
op , (20)

where, actually, the sum over M in the second line is
independent of m. It is straightforward to verify that the
particular choice

jBop� �
X
j

p
2j 1 1 j j, j� , Bj

opm � dj
m (21)

saturates the two upper bounds (19) and (20) simultane-
ously. Hence

M
jj 0

B # M
jj 0

Bop
� Mjj 0

op , (22)

for all j, j 0 and jB�, where the nonvanishing entries of the
matrix Mop are defined in (19) and (20).

We now go back to (17) and compute �t�max. We first
note that, �t�max � max

B
l�B�, where l�B� is the maximal

eigenvalue of the matrix MB. Since MB is non-negative,
Eq. (22) implies [15]

�t�max � max
B

l�B� � l�Bop� � lop . (23)

We thus have simplified the problem to that of computing
lop, the maximal eigenvalue of Mop. This can be done
proceeding along the same lines as in [7,9]. We would
like to emphasize that the calculation relies on the fact
that the maximal value of each entry of MB is reached
simultaneously, e.g., for the single state jBop�. This is,
a priori, a rather unexpected property which, however,
provides a remarkable simplification of the calculation.

The result obtained and the form of the optimal state
jBop� agree with our physical intuition as we now briefly
discuss. If Alice’s state has a well-defined total spin (i.e., it
is an eigenstate of �J2), Mop becomes diagonal and �t�max �
J��J 1 1� � N��N 1 2�. In terms of the average error,
�h� � 4�N 1 3���N 1 2�, thus, at most �N ! `� �h� �
4. In average, Bob cannot determine more than just one
axis of Alice’s trihedron. The structure of the state jBop�
is such that, within each irreducible representation, the
determination of a single axis is optimal [2] (this is the
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best Alice could do if she only were allowed to use a single
irreducible representation). At the same time, jBop� is as
different of an eigenstate of Jz as it can possibly be (if
jBop� were an eigenstate of Jz , Alice would be able to
communicate only a single axis).

For small N , one can easily obtain analytic expres-
sions for �t�max (see Table I). For large N it suffices to
give simple lower and upper bounds for �t�max. A use-
ful upper bound is provided by the condition �t�max #

maxj
P

j 0 M
jj 0
op . A lower bound is obtained by computing

D �
P

jj 0 C
jM

jj 0
opCj 0 for any normalized vector with com-

ponents Cj . A judicious choice is Cj ~
p

2j 1 1 �N�2 2

j� � j 1 1�p. The maximum of D occurs at p � 3
p

3N�4.
We obtain

3 2
4
N

1 O�N24�3� 6 �t�max 6 3 2
4
N

1 O�N22� .

(24)

It is now clear that perfect determination of the trihedron,
�t�max � 3, is reached in the asymptotic limit, and it ap-
proaches three linearly in 1�N. Finally, we have also per-
formed a linear fit for 2000 # N # 7000, and we have
obtained

�t�max � 3.0 2
4.0
N

2
9.4

N4�3
1 . . . , (25)

which is completely consistent with (24).
We now turn our attention to the construction of

POVM’s with a finite number of outcomes, as they are
the only ones that can be physically realized. The main
idea is stated in [10] (see also [12]). We need to find a
finite set �gr�, r � 1, . . . , N�J�, of elements of SU(2) and
positive weights �cr� such that the orthogonality relation

N�J�X
r�1

cr�
� j�
mm0�gr ���l��

nn0 �gr� � CJ
djldmndm0n0

2j 1 1
, (26)

holds for all j, j 0 # J , where CJ �
PN�J�

r�1 cr . This dis-
crete version of (8) is valid only up to a maximal value
J. The larger J is, the larger the N�J� that must be cho-
sen. Working along the same lines as in [10], one can
show that it is sufficient to consider the 2J 1 1 values
2pn��2J 1 1�, n � 0, 1, . . . , 2J, for each one of the two
angles a and g. With this choice, Eq. (26) holds if the
sets of values �br� and �cr� are required to satisfyX

r
crPL�cosbr � � 0, 1 # L # 2J , (27)

where PL is the Legendre polynomial of degree L. A pro-
cedure to solve this system of equations is as follows. For
J integer, define br � pr��2J 1 1�, r � 0, 1, . . . , 2J 1
1 and set c0 � c2J11 � 1. Note that xr � cosbr , r �

TABLE I. Maximal value of �t� vs the number of spins.

N 2 3 5 20 100 200

�t�max
31

p
57

12
141

p
466

30
1.6708 2.6202 2.9362 2.9707
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1, 2, . . . , 2J, are the zeros of the Chebyshev polynomial
U2J�x�. For these values of br , one can always find
positive weights cr that solve (27). Actually, using the
Gauss-Jacobi mechanical quadrature [16] for the abscissas
xr , one can prove that

cr �
16 sinbr

2J 1 1

J21X
n�0

J�J 1 1� 2 n�n 1 1�
2n 1 1

3 sin	�2n 1 1�br
, 1 # r # 2J . (28)

This solution has the nice feature of being simple and
explicit, but it is not very economical. One can reduce the
number of values br by taking xr to be the J 1 1 zeros of
PJ11�x�. In this case, cr are the Christoffel numbers given
by cr �

R1
21 dx	PJ11�x���x 2 xr�P0

J11�x�
2 . 0 [17].
The recipes above yield finite optimal POVM’s for any

value of N . In general, one can further reduce the number
of outcomes. Ideally, one would be interested in finding the
minimal POVM’s; however, as far as we are aware, the so-
lution is not known for arbitrary J and general groups [4].
Nevertheless, the minimal measurement for the first non-
trivial case of two spins is not difficult to find. Consider the
simplest normalized reference state that leads to an optimal
POVM, i.e., jB� �

p
3�2j1, 1� 1 1�2j0, 0�. It is easy to

verify that the four projectors Or � U�gr � jB� �BjUy�gr �,
with

ar �
2p�r 2 1�

3
, gr � p 2 ar ,

cosbr � 2
1
3

, r # 3 ; (29)

a4 � 0, g4 � 0, cosb4 � 1 ,

satisfy the condition
P4

r�1 Or � 1. Since the Hilbert
space has dimension four, the minimal number of out-
comes for any measurement is also four. This POVM is
therefore finite, minimal, and optimal. In fact, it is a von
Neumann measurement, as OrOs � drsOr.

We conclude that it is feasible to use quantum systems
to encode the orientation of a reference frame. The opti-
mal strategy involves the use of encoding states which are
remarkably simple and have a clear physical interpretation.
The average error of the transmission is seen to approach
zero linearly in 1�N . Finally, we give recipes for con-
structing finite optimal POVM’s and present an example
of a minimal one for the simple case N � 2.
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