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Algebraic Fermi Liquid from Phase Fluctuations: “Topological” Fermions, Vortex “Berryons,”
and QED3 Theory of Cuprate Superconductors

M. Franz and Z. Tešanović
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Within the phase fluctuation model for the pseudogap state of cuprate superconductors we identify
a novel statistical “Berry phase” interaction between the nodal quasiparticles and fluctuating vortex-
antivortex excitations. The effective action describing this model assumes the form of an anisotropic
Euclidean quantum electrodynamics in �2 1 1� dimensions �QED3� and naturally generates non-Fermi
liquid behavior for its fermionic excitations. The doping axis in the x -T phase diagram emerges as a
quantum critical line which regulates the low energy fermiology.
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Perhaps the most intriguing property of high tempera-
ture superconductors is the anomalous character of their
normal state [1]. This “strange metal” stands in stark con-
trast to the relatively benign features of the superconduct-
ing phase which can be understood rather accurately within
the framework of a d-wave BCS-like phenomenology with
well-defined quasiparticle excitations [2].

In this Letter we propose a theory of the pseudogap
phase in cuprate superconductors based on the following
premise: a successful phenomenology of the strange metal
should be built by starting from a comprehensive under-
standing of the adjacent superconducting state and its ex-
citations. The spirit of our approach is the traditional one
[1,3] but turned upside down. Usually, the strategy is to
first understand the normal state before we can understand
the superconductor. In the cuprates, however, it is the
superconducting state that appears “conventional” and its
quasiparticles “less correlated” and better defined. Having
adopted this “inverted” paradigm, we proceed to study the
interactions of the quasiparticles with the collective modes
of the system, i.e., fluctuating (anti) vortices (our strategy
here is similar to that of Ref. [4]). We show that in d-wave
superconductors these interactions take a form of a gauge
theory which shares considerable similarity with the quan-
tum electrodynamics in �2 1 1�-dimensions �QED3�. In
the superconducting state, where vortices are bound, the
gauge fields of the theory are massive and the low en-
ergy quasiparticles remain well-defined excitations. This
is the mundane Fermi liquid state in our inverted para-
digm. In the normal state, however, as vortices unbind,
our QED3-like theory enters its massless phase and it aban-
dons this “inverted Fermi liquid” protectorate in favor of a
weakly destabilized Fermi liquid characterized by a power
law singularity in the fermion propagator which we call al-
gebraic Fermi liquid. We compute the spectral properties
of fermions in our theory and find that they capture some
key qualitative aspects of the available experimental data.

We concentrate on the portion of the pseudogap phase
above the shaded region and below T � in Fig. 1. We as-
sume that Cooper pairs are formed at or somewhat be-
low T� but the long-range phase coherence sets in only
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at the superconducting transition temperature TSC ø T�

[5]. Between TSC and T � the phase order is destroyed by
unbound vortex-antivortex excitations of the Cooper pair
field [6–8]. In this pseudogap regime the d-wave super-
conducting gap is still relatively intact [4,5] and the domi-
nant interactions are those of nodal quasiparticles with
fluctuating vortices. There are two components of this in-
teraction: First, vortex fluctuations produce variations in
superfluid velocity which cause Doppler shift in quasipar-
ticle energies [9]. This effect is classical and already much
studied [10,11]. Second, there is a purely quantum “statis-
tical” interaction, tied to a geometric “Berry phase” effect
that winds the phase of a quasiparticle as it encircles a vor-
tex [12,13]. It is this quantum mechanical interaction that
ultimately causes the destruction of the Fermi liquid in the
pseudogap phase.

Our starting point is the partition function

Z �
Z

DCy �r,t�
Z

DC �r, t�
Z

Dw �r, t� exp�2S� ,

S �
Z

dt
Z

d2r �Cy≠tC 1 CyH C 1 �1�g�D�D� ,

(1)

where t is the imaginary time, r � �x, y�, g is an effec-
tive coupling constant, and Cy � �c̄", c#� are the standard
Grassmann variables. The Hamiltonian H is given by

FIG. 1. Phase diagram of a cuprate superconductor.
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H �

√
Ĥe D̂

D̂� 2Ĥ �
e

!
, (2)

with Ĥe �
1

2m �p̂ 2
e
c A�2 2 eF , p � 2i= (we take

h̄ � 1), and D̂ is the d-wave pairing operator [12],
D̂ � �1�k2

F � ��� p̂x , � p̂y , D���� 2 �i�4k2
F �D�≠x≠yw�, where

D�r, t� � jDj exp�iw�r, t�� is the center-of-mass gap
function.

R
Dw �r, t� denotes an integral over smooth

(“spin wave”) and singular (vortex) phase fluctuations.
Amplitude fluctuations are suppressed below T�.

It is convenient to eliminate the phase w�r, t� from the
pairing term (2) in favor of ≠mw terms �m � �x, y, t��
in the fermionic action. In order to avoid dealing with
nonsingle-valued wave functions we employ the singular
gauge transformation devised in Ref. [12]:

c̄" ! exp�iwA�c̄", c̄# ! exp�iwB�c̄# , (3)

where wA 1 wB � w. Here wA�B� is the singular part
of the phase due to A�B� vortex defects: = 3 =wA�B� �

2p ẑ
P

i qid�r 2 r
A�B�
i �, with qi � 61 denoting the topo-

logical charge of the ith vortex and r
A�B�
i �t� its position.

The labels A and B represent some convenient but other-
wise arbitrary division of vortex defects [loops or lines in
w�r, t�] into two sets. As discussed in [12] this trans-
formation guarantees that the fermionic wave functions
remain single valued and the effect of branch cuts is in-
corporated directly into the fermionic part of the action:

L 0 � c̄"�≠t 1 i�≠twA��c"

1 c̄#�≠t 1 i�≠twB��c# 1 CyH 0C ,

where the transformed Hamiltonian H 0 is√
1

2m �p̂ 1 v�2 2 eF D̂

D̂ 2
1

2m �p̂ 2 v�2 1 eF

!
,

with D̂ � �D0�2k2
F� �p̂xp̂y 1 p̂yp̂x� and p̂ � p̂ 1 a.

The transformation (4) generates a “Berry gauge poten-
tial” am �

1
2 �≠mwA 2 ≠mwB� which describes half-flux

Aharonov-Bohm scattering of quasiparticles on vortices
and mimics the effect of branch cuts in quasiparticle-
vortex dynamics [12,13]. This is in addition to the
“Doppler” gauge field ym �

1
2 �≠mwA 1 ≠mwB� which

denotes the classical part of the quasiparticle-vortex
interaction. All choices of the sets A and B are equiva-
lent—different choices represent different singular
gauges, and ym is invariant under such transformations.
To symmetrize the partition function with respect to this
singular gauge we define a generalized transformation
(3) as the sum over all possible choices of A and B, i.e.,
over the entire family of singular gauge transformations.
This is an Ising sum with 2Nl members, where Nl is the
total number of vortex defects in w�r, t�. This sym-
metrization leads to the new partition function Z ! Z̃ �R
D C̃y

R
D C̃

R
Dym

R
D am exp�2

R
dt

R
d2r L̃ �

in which the half-flux-to-minus-half-flux �Z2� symmetry
of the singular gauge transformation (3) is manifest:
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L̃ � C̃y��≠t 1 iat�s0 1 iyts3�C̃

1 C̃yH̃ C̃ 1 L0�ym, am� , (4)

where L0 is the “Jacobian” of the transformation given by

e2
R

dt
R

d2rL0 � 22Nl

X
A,B

Z
Dw�r, t�

3 d�ym 2
1
2 �≠mwA 1 ≠mwB��

3 d�am 2
1
2 �≠mwA 2 ≠mwB�� .

Here sm are the Pauli matrices and H̃ � H 0. We call
the quasiparticles C̃y � � ¯̃cy, c̃#� appearing in (4) “topo-
logical fermions” (TF’s). TF’s are the natural fermionic
excitations of the pseudogapped normal state. They are
electrically neutral and are related to the original quasipar-
ticles by the inversion of transformation (3).

To proceed we must extract the low energy, long-
distance properties of the Jacobian (4). This is done
by focusing on the fluctuations of two gauge fields
ym and am in the fluid of vortex excitations. We use
the saddle-point approximation to compute the leading
(quadratic) terms in L0 for two cases of interest: (i) the
thermal vortex-antivortex fluctuations in 2D layers and
(ii) the space-time vortex loop excitations relevant for low
temperatures �T ø T�� in the underdoped regime (but
still above the shaded region in Fig. 1). The computation
is straightforward but the algebra is laborious and will
be presented elsewhere [14]. Here we quote only the
final results whose form is ultimately dictated by the
symmetries of the problem. For the case (i),

L0 !
T

2p2nl
��= 3 v�2 1 �= 3 a�2� , (5)

where nl is the average density of free vortex defects.
Both v and a have a Maxwellian bare stiffness and are
massless in the normal state. As one approaches TSC,
nl � j

22
SC ! 0, where jSC�x, T� is the superconducting

correlation length, and v and a become massive. Similarly,
for the case (ii), the quantum fluctuations of unbound vor-
tex loops result in [14]

L0 !
1

2p2

∑
Kt �≠ 3 a�2

t 1
X

i

Ki�≠ 3 a�2
i

∏
, (6)

where Kt and Ki �i � x, y� are functions of x and T :
Ki � jSC and Kt � j

z
SC, with z being the dynamical ex-

ponent. The Maxwell form of L0 is dictated by symme-
try: the bare propagators for ym and am, D 0

y �q, iv� and
D 0

a �q, iv�, are massless in the normal state and massive
within a superconductor. Note that we dropped ym from
(6)—the reason for this is made apparent below.

The physical picture advanced in this Letter rests on the
following observations: ym couples to the TF “charge”
in the same way as the real electromagnetic gauge field.
Consequently, if we integrate out TF’s in Eq. (4) to ob-
tain the renormalized (or dressed) gauge field propaga-
tors Dy�q, iv� and Da�q, iv�, we find that D21

y �q !
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0, iv � 0� ! const, i.e., the Doppler gauge field ym is
massive. This is a consequence of the Meissner response
of TF’s. Physically, this means that the integration over
the quasiparticles leads to the familiar long-range interac-
tions between vortices. In contrast, the “Berry” gauge field
am couples to the TF spin. This implies that any contri-
bution of TF’s to the stiffness of am must be massless: a
singlet superconductor retains the global SU(2) spin sym-
metry ensuring that D21

a �q � 0, iv � 0� � 0.
When we combine this with the bare propagators im-

plied by Eqs. (5) and (6) the following physical picture
emerges. In the superconducting state, both ym and am

are massive by virtue of vortex excitations being bound in
finite loops. The massive character of ym and am protects
the coherent TF excitations from being smeared by vor-
tex fluctuations. The coupling of TF’s to the gauge fields
ym and am is irrelevant. This is our inverted Fermi liq-
uid phase.

In the normal (pseudogap) state, the situation changes
dramatically. The bare propagators for ym and am are
now massless but the renormalization by the medium of
TF’s screens these bare propagators and still keeps ym

massive. Thus, TF coupling to the Doppler shift and “spin
waves” remains irrelevant even in the normal state. The
Berry gauge field am, however, is now truly massless since
the spin polarization in the medium of TF’s cannot fully
screen the massless bare propagator. Instead, by com-
puting the TF polarization, we find D21

a ~
1
8

p
v2 1 q2

for �q, iv� ! 0; stiffer than the Maxwellian form
[Eqs. (5) and (6)], but still massless. The massless gauge
field am produces strong scattering at low energies and
affects qualitatively the spectral properties of TF’s.

The low energy quasiparticles are located at the four
nodal points of the dxy gap function: �6kF , 0� and
�0, 6kF �, hereafter denoted as �1, 1̄� and �2, 2̄�, respec-
tively. Linearizing the fermionic spectrum in the proximity
of these nodes leads to the effective Lagrangian,

LD �
X

a�1,1̄

Cy
a�Dt 2 iyFDxs3 2 iyDDys1�Ca

1
X

a�2,2̄

Cy
a�Dt 2 iyFDys3 2 iyDDxs1�Ca

1 L0�am� , (7)

where Cy
a is a two-component nodal spinor, a is a node

index, Dm � ≠m 1 iam, and L0 is given by (6). We have
dropped the Doppler gauge field ym since it is massive both
below and above TSC and irrelevant for our purposes.

The Lagrangian (7) and the physics it embodies are our
main results. In the normal state, am becomes massless
and the problem of quasiparticle interactions with vortex
fluctuations takes the form of topological fermions inter-
acting with massless “berryons,” i.e., quanta of the Berry
gauge field am. We recognize the above theory as equiva-
lent (apart from the intrinsic anisotropy) to the Euclidean
quantum electrodynamics of massless Dirac fermions in
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�2 1 1� dimensions. The remarkable feature of QED3 is
that it naturally generates a non-Fermi liquid phenomenol-
ogy for its fermionic excitations. This property of QED3
has led to previous suggestions that it should be, in some
form, relevant to cuprate superconductivity [15,16]. How-
ever, the physical content of QED3 as an effective low en-
ergy theory in this Letter is entirely different from those
earlier works.

We now discuss the low energy phenomenology gov-
erned by the TF propagator: G21

a �k, v� � G21
a0 �k, v� 2

Sa�k, v�, where G21
a0 is a free Dirac propagator at node

a. We first consider the T � 0 case in the isotropic limit
�yF � yD� where explicit results are readily obtained. In
this case G21

a0 � v 2 yFkxs3 2 yDkys1 and we find

Sa �
8

3p2N
�2v 1 yFkxs3 1 yDkys1� ln�L�p� ,

(8)

with p � �2v2 1 y
2
Fk2

x 1 y
2
Dk2

y �1�2, L is a high energy
cutoff, and N � 2 is the number of pairs of nodes.

The essential feature of the TF propagator is the sin-
gular behavior of the self-energy Sa�k, v� which arises
from the massless nature of the dressed berryon propaga-
tor Da�q, v� and is logarithmic in the leading order. This
result can be formalized as the leading term in a large N
expansion. Ultimately, the resummation of such an ex-
pansion [15] yields a power law singularity Ga ~ ph21,
with a small exponent h � 28�3p2N . For our purposes,
having to deal with both the anisotropy and finite T , the
leading order form (8) is more convenient since it allows
for explicit computation of various quantities. Once we
move beyond the leading order, the vertex corrections to
Sa are necessary and the algebra becomes impenetrable.
Furthermore, the available experiments are unlikely to dis-
tinguish between h � 01 and a small finite exponent.

The singularity in Sa heralds the breakdown of the
Fermi liquid behavior in the normal state. To see this,
consider Eq. (8) for Ek 	 �y2

Fk2
x 1 y

2
Dk2

y �1�2 ø jvj. We
find Sa ~ 2�8�3p2N �v ln�L�

p
2v2�. The residue of

the fermion pole vanishes as v ! 0, Z�v� � 1� ln jvj,
while its width goes as S00

a � 2�4�3pN�jvj. This be-
havior is reminiscent of the marginal Fermi liquid (MFL)
expression for the self-energy, assumed on phenomenolog-
ical grounds by Varma et al. [17]. Note, however, that our
QED3 TF propagator implied by Eq. (8) remains qualita-
tively different from the MFL ansatz [17], both by the fact
that ln�L�p� is replaced by a weak power law (thus al-
gebraic Fermi liquid) and by the momentum dependence
of Sa�k, v�. As shown below it is this combined momen-
tum-frequency dependence that provides a natural explana-
tion for some of the remarkable features of the fermionic
spectral function in cuprates observed in the angle-resolved
photoemission spectroscopy (ARPES) experiments [18].
Also, we emphasize that our results apply to the pseudogap
phase below T �. The physics of the normal state at higher
temperatures is beyond the scope of our present theory.
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FIG. 2. Energy versus momentum distribution curves of
A�k, v�. Left: EDC cut taken for k � 0 (coincident with a
nodal point), and MDC cut taken for v � 02 and ky � 0. Both
curves have been broadened (by the same amount) to simulate
the finite resolution of an ARPES experiment. Right: the
corresponding spectral function density plots for isotropic (top)
and anisotropic yF�yD � 17 (bottom) cases (to be compared
with Figs. 1 and 2 of Ref. [18]).

Inspection of Eq. (8) reveals that Sa has an imaginary
part only inside the cone defined by v2 . y

2
Fk2

x 1 y
2
Dk2

y ;
outside this cone S00

a vanishes. This implies that TF spec-
tral function plotted as a function of momentum at fixed v
[momentum distribution curve (MDC)] will be very sharp
close to the Fermi surface, while the corresponding energy
distribution curve (EDC) will be broad. This is illustrated
in Fig. 2, where we plot the spectral function A�k, v� �
p21 Im�Ga�k, v��11 deduced from Eq. (8). We note that
precisely such striking asymmetry between the EDC and
MDC cuts is observed in the ARPES data [18].

These qualitative features of the spectral function sur-
vive at finite temperature and away from the isotropic
limit. Unfortunately, away from this simple limit the pre-
cise form of the TF propagator is not known: as soon
as the “relativistic” invariance of the T � 0 problem (7)
is lost, analytic calculations become intractable. We find
that, for T ø v, Ek, the self-energy retains its T � 0
form [Eq. (8)] with a small temperature correction. On the
other hand, when T ¿ v, Ek, we find S00

a � T , qualita-
tively consistent with the original MFL conjecture S00

a �
max�v, T�. We note that such a T-linear scattering rate
has been deduced from ARPES experiments [18].

In ARPES, one measures the spectral function of
real electrons, not of TF’s. While the inversion of the
transformation (3) after the phases have been coarse
grained and replaced by the gauge fields is a daunt-
ing task, our theory ensures the gauge invariance
with respect to am of the true electron propaga-
tor. The simplest such gauge invariant propagator is
Gelec

11 �x, x0� 
 �exp�i
Rx0

x dsmam� �C̃�x�C̃y�x0��11�, where
x � �r, t�. By employing a gauge in which the line
integral of am vanishes [19], we have computed the
asymptotic behavior of Gelec�x, x0�. We find [14] that
it exhibits a power law singularity with the exponent
h0 � 2h � 216�3p2N. This strongly suggests that
the true electron propagator, whose precise form within
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QED3 is unknown at present, will exhibit a power law
with a small positive exponent.

In conclusion, we argue that the pseudogap regime in
cuprates can be modeled as a phase disordered d-wave
superconductor. Such an assumption naturally leads to
a QED3 theory for the massless Dirac “topological” fer-
mions interacting with a massless gauge field of vortex
berryons. Coupling to the massles gauge field destroys
the Fermi liquid pole in the fermion propagator and gener-
ates algebraic Fermi liquid. Lacking any energy or length
scale this theory can be thought of as being critical, in-
dependently of the actual doping level x. Below T � the
low energy spectral properties of the fermions are there-
fore regulated by a quantum critical line. In this regime the
low energy fermiology, including thermodynamics, trans-
port, and density and current responses are all controlled
by the universal properties of topological fermions and vor-
tex berryons encoded in the anisotropic QED3 Lagrangian
(7). Eventually, this peculiar quantum critical behavior
gives way to the actual superconducting phase at TSC�x�,
and the Fermi liquid character of the nodal quasiparti-
cles is restored as vortices bind into finite loops. At very
low doping, hole Wigner crystal, spin-density wave, and
other low-T phases become possible, reflecting the strong
Mott-Hubbard correlations.
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