
VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001

257001-1
Superconductivity near Itinerant Ferromagnetic Quantum Criticality

Ziqiang Wang,1 Wenjin Mao,1,2 and Kevin Bedell1
1Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467
2Department of Physics, Rutgers University, Piscataway, New Jersey 08854

(Received 2 April 2001; published 28 November 2001)

Superconductivity mediated by spin fluctuations in weak and nearly ferromagnetic metals is studied
close to the zero-temperature magnetic transition. We solve analytically the Eliashberg equations for
p-wave pairing and obtain the quasiparticle self-energy and the superconducting transition temperature
Tc as a function of the distance to the quantum critical point (QCP). We show that the reduction of
quasiparticle coherence and lifetime due to scattering by quasistatic spin fluctuations is the dominant pair-
breaking process, which leads to a rapid suppression of Tc to a nonzero value near the QCP. We point
out the differences and similarities of the problem to that of paramagnetic impurities in superconductors.
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Superconducting ground states have recently been dis-
covered in materials sitting close to the zero-temperature
phase boundary of both antiferromagnetic (AF) and fer-
romagnetic (FM) transitions [1,2]. It is quite natural to
suspect that pairing in these materials is mediated by spin
fluctuations which are enhanced near the magnetic quan-
tum critical point (QCP) [3–9]. However, it is known
that quasiparticles scattered by critical spin fluctuations are
subject to severe non-Fermi liquid self-energy corrections
that are in general pair breaking. The interplay between
these two competing effects, generic to superconductivity
near quantum phase transitions, has not been fully under-
stood and is the subject of this Letter.

We focus on the case of p-wave superconductivity near
the ferromagnetic QCP where the Curie temperature is
driven to zero by, e.g., pressure or doping [2,10]. In the
vicinity of the transition, the normal states can be described
by weak and nearly FM Fermi liquids at low temperatures,
respectively [11,12]. The important low-energy excitations
are the quasiparticles and the long wavelength spin fluc-
tuations. Since the quasiparticles couple strongly to spin
fluctuations near the QCP, it is necessary to adapt the
framework of the strong coupling Eliashberg equations.
The long wavelength nature of the critical spin fluctua-
tions near the FM QCP [13] makes the solution of these
equations theoretically tractable, enabling us to obtain
analytical results for the self-energy and the transition
temperature Tc. We find the onset of p-wave super-
conductivity in both the Fermi liquid Tc , T� and the
quantum critical regime Tc . T �, where T � is the char-
acteristic frequency for spin fluctuations. We show that
Tc is rapidly reduced on approaching quantum criticality
with T � ! 0 due to the rapid reduction of quasiparticle
coherence and lifetime caused by quasistatic scattering of
spin fluctuations analogous to the suppression of Tc by
paramagnetic impurities [14]. Interestingly, Tc remains
finite at the FM QCP. We shall not discuss the problem
of coexistence of ferromagnetism and superconductivity,
which would require a careful treatment of the coupling
between the superconducting order parameter and the
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electromagnetic fields associated with the ferromagnetic
fluctuations [15].

In a FM Fermi liquid with spin polarization along
the z axis, the single-particle Green’s function has the
form Gs�e, �p� � as��e 2 ys� �p 2 ps� 1 ih sgn�e��,
where h ! 01, ps �s � ", #� are the Fermi momenta
of the spin up and down electrons, and as are the
wave-function renormalizations. For a weak FM metal,
such as the one close to a continuous FM transition, the
difference in the Fermi momenta is small, d � jp" 2

p#j ø p",#, and it is possible to set p" � p# � pF and
a" � a# [11]. The spin fluctuations are described by
the propagators of the electron spin density, Dij� �x, t� �
2i��Si� �x, t� 2 �Si�� �Sj �0, 0� 2 �Sj���, i, j � x, y, z. The
long wavelength and low-energy spin fluctuations in the
transverse and longitudinal channels are given by [11]
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Here a 	 �d�pF�2 ø 1 measures the distance to the criti-
cal point, S � yFdNF�2 is the averaged uniform spin den-
sity, L � 2yFpF is an energy scale of the order of the
Fermi energy, and NF 
 p2

F��2p2yF � is the density of
states per spin at the Fermi level. Notice that the trans-
verse spin wave emerges only for q ø d with a dispersion
vs�q� 
 yFd�q�2pF�2.

On the paramagnetic (PM) side, the spin rotation sym-
metry is restored. The spin fluctuations become isotropic,
D� � Dk � D. All three modes take on the paramagnon
form in Eq. (1) with a determined by the spin correlation
length js, a � j22

s .
FM spin fluctuations are known to be pair breaking in

the s-wave channel and therefore suppress the conventional
phonon-mediated superconductivity in PM metals. This
problem was studied by Berk and Schrieffer [16] using the
strong coupling Eliashberg theory and is believed to be the
© 2001 The American Physical Society 257001-1
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reason transition metals close to the FM instability have, if
any, a low Tc. In contrast, the pairing interaction is attrac-
tive in the l � odd angular momentum channel, raising
the interesting possibility of FM spin fluctuation mediated
spin-triplet superconductivity [17]. In general, the pres-
ence of a spontaneous magnetization in the FM phase leads
to a set of four Eliashberg equations. However, for weak
ferromagnets with small moments, the spin dependence of
the self-energy and the gap function can be ignored. For
notational convenience, we shall limit the presentation to
the PM phase, the modification on the FM side is straight-
forward, and the differences will be noted explicitly.

Expressing the self-energy in the Nambu formalism,
Sp�v� � �1 2 Zp�v��vt0 1 Zp �v�Dp�v�t1, where
Dp�v� is the gap function, the linearized Eliashberg
equations are given by [18]

ivn�1 2 Zp�ivn�� � 2g2
0s0T
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Here g0 is the coupling constant of the quasiparticles to
spin fluctuations and jk � k2�2m 2 m. Note that the
presence of Heisenberg symmetry in the PM phase guar-
antees three identical soft modes contributing to the self-
energy but one longitudinal mode to the gap equation for
triplet pairing [6], i.e., s0 � 3 and s1 � 1. To study the
influence of the departure from this symmetry on Tc, e.g.,
Ising spins with s0 � s1 � 1, we keep s0 and s1 as gen-
eral parameters. On the FM side, spin rotation symme-
try is broken. While the gap equation (4) contains only
the longitudinal mode and stays invariant, the self-energy
equation (3) needs to be modified straightforwardly to re-
flect the different contributions from the transverse modes.

It is customary to proceed by separating the k inte-
gral according to,

R
d3k ! �4p2

F�yF�
R

x dx
R

df
R

djk ,
where x � sin�u�2�, u is the angle between �k and �q �
�p 2 �k, and jk satisfies the kinematic constraint q2 

4p2

Fx2 1 j
2
k�y

2
F . As it will turn out later, close to the QCP

and compared to their frequency dependence, the self-
energies have a negligibly weak momentum dependence.
We thus drop the k dependence in Zk�iv� ! Z�iv� and
project the gap function into the lth angular momentum
channel, Dk�iv� ! Dl�iv�. With this approximation, it
is possible to carry out the integral over jk . In order to
make analytical progress, we analytically continue to real
frequencies and obtain
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Z `

2`
de

Z 1

0
x dx

Ω∑
1�U�v 2 e�

�U�v 2 e� 2 ieZ�e��L�
1 �iZ ! 2iZ��

∏
tanh

µ
e

2T

∂

1

∑
1�U�e�

�U�e� 2 i�v 2 e�Z�v 2 e��L�
2 �U ! U��

∏
coth

µ
e

2T

∂æ
, (5)

Z�v�Dl�v� � slg
2

Z `

2`

de
Z 1

0
x dx

Ω∑
Dl�e��e

U�v 2 e� �U�v 2 e� 2 ieZ�e��L�
1 �iZ, Dl ! 2iZ�,D�

l �
∏

tanh

µ
e

2T

∂

1

∑
Dl�v 2 e��v 2 e

U�e� �U�e� 2 i�v 2 e�Z�v 2 e��L�
2 �U ! U��

∏
coth

µ
e

2T

∂æ
Pl�1 2 2x2� ,

(6)

where g2 � g2

0N2
F�2, Pl�x� is the Legendre polynomial,

and U2�e� � a 1 x2 2 ipe�4xL.
We first solve Eq. (5) to derive the quasiparticle self-

energy in the normal state. The self-consistency in
this equation is crucial near the QCP, since as a ! 0,
the important low frequency cutoff in the denominators is
the self-energy itself. It is straightforward to show that the
dominant contributions come from the scattering by the
spin fluctuations with momentum transfer q ¿ d, having
the same form in both the PM and the FM phase close
to the QCP. We find that the characteristic energy scale
for spin fluctuation, T� � a3�2L, enters as an important
crossover temperature scale. For y � max�T , e� , T�,
the self-energy behaves as in a Fermi liquid,

S�e, T � 	 2c0e ln�L�T�� 2 ic00y2�T �, y , T �, (7)

where c0, c00 � s0g2. However, for y . T�, the scattering
by spin fluctuations is enhanced and the self-energy be-
comes non-Fermi-liquid-like with the real part
S0�e, T � 	 2c0e ln�L�y�, y . T�. (8)

This leads to a quasiparticle residue Z that vanishes
logarithmically on approaching the QCP as in the mar-
ginal Fermi liquid [19], Z21 � 1 2 �≠S0�≠e�je�0 �
1 1 c0 ln�L�Max�T�, T��. For e . T ¿ T�, the imagi-
nary part of S follows:

S00�e� 	 2c00pe�2, e . T ¿ T�. (9)

In the quasistatic regime, T . e ¿ T �, another energy
scale arises by comparing the coherence length jcoh �
yF�T to the spin correlation length js � 1�

p
a. We find

for jcoh . js,

S00�T � 	 2c00T ln
T
T �

,
T
L

ln
L

T
ø

µ
T�

L

∂1�3

. (10)

For even smaller T�, such that jcoh , js, the quasiparti-
cles scatter off essentially uncorrelated spins. In this case,
the unphysical singularity in Eq. (10) as T � ! 0 must be
257001-2
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removed by the self-consistency of Eq. (5) where S00 itself
becomes the cutoff. We find

S00 	 2c00T ln�L2T�jS00j3� 1 3c00
p

a TL�2jS00j , (11)

which has the following self-consistent solution:
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The same behavior of S holds on the FM side since the
dominant scattering process has q ¿ d. In this range of q,
the breaking of spin rotation invariance is insignificant as
seen in Eqs. (1) and (2). The spin wave contribution is not
important since the difference between the Fermi momen-
tum �d� is much larger than most of the momenta carried
by the spin waves. Notice that the inelastic scattering rate
in the quasistatic limit increases with a square-root singu-
larity as a ! 0, leading eminently to a rapid suppression
of Tc on approaching the QCP.

We next determine Tc by solving Eq. (6) for the
simplest l � 1, p-wave case [20]. To treat the effects
of both mass renormalization and scattering lifetime, we
write Z � Z 0 1 iZ 00 and the complex gap function as
D � D0 1 iD00. Taking the imaginary part of the gap
equation (6), we obtain to leading order in Tc�T0, T0 � L

being the cutoff frequency for spin fluctuations — a
magnetic analog of Debye frequency,

Z 0�v�D00�v� 1 bZ 00�v�D0�v�sl�s0 
 0 . (13)

Here b � s0�sl 2 1 reflects the spin symmetry. Writ-
ing for small v, vZ�v� � �1 1 l�T��v 2 iG�v�, where
l � 2S0�v is the effective coupling and G � 2S00 is
half the inverse lifetime of the quasiparticles, Eq. (13) be-
comes bG�v�D0�v� � �1 1 l�vD00s0�sl , which allows
us to account for the damping of the order parameter in
terms of a real effective gap function,

Deff�v� � D0�v��1 1 �eG�v�2� , (14)

where eG � bslG�s0�1 1 l�. In contrast to D0, Deff has
a weaker v dependence and remains finite in the small
v limit. Now we can rewrite the real part of the gap
equation (6) as an integral equation for Deff,

�1 1 l�Deff�v� � 2slg
2

Z `

2`
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0
x dx Pl�1 2 2x2�

3 tanh

µ
e
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∂
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3 Re
1

U2�v 2 e, x�
. (15)

The scattering rate enters as a low-energy cutoff of the
logarithmic singularity responsible for the superconducting
instability. Next we attempt an approximate analytical
solution of Tc from Eq. (15) where the weak frequency
dependence of Deff can be neglected.

Fermi liquid regime.— Consider first the case Tc ø

T� ø T0, i.e., the onset of superconductivity in the Fermi
257001-3
liquid regime away from the QCP. Since the temperature
is much lower than the characteristic spin fluctuation fre-
quency, inelastic scattering dominates, but with the ordi-
nary Fermi liquid scattering rate [see Eq. (7)] that is much
smaller than max�kBT , e�. The effect of a nonzero eG on
Tc is thus small and negligible. Solving Eq. (15) to next
to leading order in T��T0, we obtain

Tc 
 T0e2�h 01b�2A13�1A2���2A23�, (16)

where A � ln T0�T �, h0 � �3�2slg2� 1 �p2�24� 1

6 ln�
p

2 g�p� 2 3, and lng 
 0.577 is Euler’s constant.
As T � is reduced towards the QCP, spin fluctuations
increase and pairing is enhanced. This causes Tc to rise
initially. Reducing T� further eventually causes the system
near Tc to lose sensitivity to the finite correlation length,
leading to new physics associated with superconductivity
near quantum criticality.

Quantum critical region.—Here T0 ¿ Tc ¿ T�, the
superconducting transition occurs inside the quantum criti-
cal regime. Since the temperature is much higher than
the characteristic quantum spin fluctuation energy, inelas-
tic scattering is negligible and the dominant pair-breaking
effect comes from quasistatic �v , Tc� spin fluctuations
with a scattering rate eG�T� � 2bslS

00�T��s0�1 1 l�T��.
The suppression of Tc due to eG is thus reminiscent of
Abrikosov and Gor’kov’s theory of superconducting alloys
with paramagnetic impurities [14]. Accordingly, Eq. (15)
has the solution

ln
Tc

Tc0
� c

µ
1
2

∂
2 c

∑
1
2

1
eG�Tc�
2pTc

∏
, (17)

where c is the digamma function and Tc0 is the transi-
tion temperature in the absence of eG. To leading order in
Tc�T0,

Tc0

T0
� e2�b̃1

p
b̃12b�12�p�

p
3� �T ��Tc0�2�3�1h1�p�

p
3� �T ��Tc0�2�3�,

(18)

with b̃ � 3 1 b and h � �3�2slg2� 1 6 ln�2g�p� 2

p2�24. At the QCP, we find Tc0�T0 � 1025 for Heisen-
berg symmetry and �1023 for Ising symmetry.

A few remarks are in order for Tc in the quantum critical
regime. (i) For Ising spins, b � 0. Equation (17) shows
that Tc is not affected by a finite quasiparticle lifetime,
i.e., Tc 
 Tc0. Furthermore, to leading order, Tc0 is not
reduced by the real part of the self-energy. This is, in fact,
a manifestation of Anderson’s theorem [21] for nonmag-
netic impurities. It arises in our case from the cancellation
of the self-energy effects in the gap equation (15) in the
quasistatic limit when s0 � sl . From Eq. (18), it follows
that Tc decreases linearly with a close to the QCP with a
slope dTc�da � 2Tc�T0�Tc�2�3 for Ising spins.

(ii) For Heisenberg spins, b � 2. Tc0 decreases
with the reduction of quasiparticle coherence on ap-
proaching the QCP. Tc is further reduced from Tc0

due to the increasing scattering rate. However, in
contrast to the case of magnetic impurities where Tc
257001-3
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FIG. 1. Tc versus a for g2 � 0.3 (lines) and 0.15 (triangles).
Tc0 and Tc obtained from Eq. (17) are shown for comparison.
The peak in Tc versus a scales with T �.

can be suppressed to zero at a finite concentration,
we find that Tc remains finite at the QCP as a con-
sequence of the T -dependent scattering rate. From
Eqs. (8) and (12) at a � 0, it follows that eG�Tc��Tc �
bslc00 ln�L�Tc��s0�1 1 c0 ln�L�Tc�� tends to a constant
r � c00bsl�2s0pc0 of order unity for Tc ø L, leading
to Tc 
 Tc0 exp 2�c�1�2 1 r� 2 c�1�2��.

The results obtained from the numerical solution of
Eq. (15) are shown in Fig. 1. On the PM side, they are
in agreement with those of Roussev and Millis [8]. We
next analyze how Tc varies with a close to the QCP
in the Heisenberg case. Equation (18) shows that Tc0
increases linearly with a, as the overall sign of the
terms proportional to �T��Tc�2�3 has changed from the
Ising case due to the real part of the self-energy when
b � 2. However, we find that this effect is subleading,
and the dominant a dependence of Tc comes from the
scattering rate in Eq. (17) through the strong a depen-
dence of S00 near the QCP, i.e., dTc�da ~ 2dS00�da.
From Eqs. (10) and (12), we obtain dTc�da � 1�

p
a,

for
p

a ø �Tc�L� ln�L�Tc�, and dTc�da � 1�a, for
�Tc�L� ln�L�Tc� ,

p
a , �Tc�L�1�3.

In the FM phase, the spin rotation symmetry is broken.
However, close to the transition, approximate Heisenberg
symmetry is restored due to the small difference in the
Fermi momenta which in turn, as discussed above, sup-
presses the contributions of the long wavelength Gold-
stone mode to the electron-spin fluctuation kernel. As
a result, the superconducting phase boundary is approxi-
mately symmetric near the magnetic QCP. Away from the
QCP, the deviation from the Heisenberg symmetry leads
effectively to a b value that is shifted downward from the
Heisenberg value and a somewhat higher Tc (see Fig. 1)
on the FM side. Well inside the FM phase, the relative sup-
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pression of the fluctuation in the transverse channel makes
the situation closer to the Ising case studied above, result-
ing in a much higher Tc [2].

Our results suggest whether a significant suppression
of Tc occurs near the QPC can be used to help identify
the spin symmetry of the superconducting order parame-
ter. We have shown that such a reduction occurs in the
triplet case but is absent for singlet pairing, e.g., the s-wave
pairing proposed in the weak FM local Fermi liquid theory
[9]. In the singlet case, the spin fluctuations contributing to
the self-energy and the gap equation are identical and the
dominant quasistatic pair-breaking effects in the quantum
critical regime cancel out as in the Ising case discussed
above. Existing data [1] show that Tc indeed peaks near
the AF QCP where pairing due to AF spin fluctuations is
expected to be spin-singlet in nature.
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