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The effects of interplay between spin-orbit coupling and Zeeman splitting on weak localization and
universal conductance fluctuations in lateral semiconductor quantum dots are analyzed: All possible
symmetry classes of corresponding random matrix theories are listed and crossovers between them
achievable by sweeping magnetic field and changing the dot parameters are described. We also suggest
experiments to measure the spin-orbit coupling constants.
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The effects of spin-orbit (SO) coupling on transport phe-
nomena in chaotic quantum dots [1,2] recently attracted
attention. Motivated by a puzzling modification of the vari-
ance of the mesoscopic conductance fluctuations with ap-
plied in-plane magnetic field, Halperin et al. [2] suggested
that the specific form of the spin-orbit interaction in a 2D
electron gas based on semiconductor heterostructures may
be responsible for a series of crossovers not considered in
the existing literature [3]. It has also been noticed [2,4]
that spin relaxation in a quantum dot may be facilitated by
the Zeeman field.

The goal of this Letter is threefold: (i) we identify all
possible symmetry classes which arise from the interplay
between SO coupling and Zeeman splitting in a disordered
or chaotic semiconductor quantum dot and describe all the
physically achievable parametric dependencies treated as
crossovers between distinct symmetry classes; (ii) we pro-
vide a complete quantitative theory for the transport char-
acteristics of such a dot based upon both diagrammatic
perturbation theory analysis and the use of random ma-
trix theory approach, and (iii) we show that the SO cou-
pling effects depend on the magnetic field orientation in
anisotropic dots and discuss possible experiments enabling
one to measure directly the ratio between two independent
SO constants.

The single-particle Hamiltonian of the system, H �
H0 1 u� �r�, is the sum of the free-electron dispersion term
and a potential, u��r�, consisting of a confining potential
and a random potential of impurities. The free-electron
term includes spin-orbit coupling, as a combination of a
Rashba term and a crystalline anisotropy term [specified
for the (001) plane of GaAs], and Zeeman splitting energy
due to the in-plane magnetic field [5], �B � �lB,
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where �p � �P 2 �A is the kinetic momentum, with �P being
the canonical momentum and �A � eBz� �r 3 �nz ��2c being
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the vector potential describing the orbital effect of the mag-
netic field. Since the (001) plane of GaAs has the symme-
try of a square without inversion center, C2y , we choose
the coordinate system �x1, x2� with axes along crystallo-
graphic directions �e1 � �110� and �e2 � �11̄0� and rewrite
H0 as
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where h̄l21
1,2 � a 6 � characterize the length scale asso-

ciated with the strength of the spin-orbit coupling for elec-
trons moving along principal crystallographic directions
[s1,2,3 are Pauli matrices, s2 � 2s

T
2 , s1,3 � s

T
1,3].

The Hamiltonian H � H0 1 u� �r� describes the elec-
tron motion in a lateral semiconductor dot coupled to
metallic leads via two contacts, l and r, each with Nl,r *
1 open orbital channels. In the present Letter, we focus
on chaotic systems in the regime of a hard chaos (i.e.,
far from integrability and neglecting effects of weakly
unstable orbits) and the regime of disordered dots. That
is why below we use the universal 0D description (known
to be equivalent to the random matrix theory approach [6])
applicable if [7,8]

g, eZ ø ET; L1,2 ø l1,2 . (2)

Here, g�h̄ � �Nl 1 Nr�D�2p h̄ stands for the escape rate
into the leads via ballistic adiabatic contacts with Nr,l
reflectionless channels [1,3], D � 2p h̄2�mA is the mean
level spacing in a dot with area A � L1L2, and ET is
the conventional Thouless energy. The last inequality in
Eq. (2) allows us to treat the SO coupling as weak.

Our purpose now is to identify Hamiltonian (1) with an
appropriate random matrix ensemble. Doing it directly,
however, is not convenient. The reason for this is that
on shell matrix elements of the velocity vanish due to
the gauge invariance (the importance of this fact for SO
interaction in quantum dots was first noticed in Ref. [2]).
It means that if the spin remained fixed during the motion
of the electron, the effect of SO coupling would be just a
© 2001 The American Physical Society 256801-1
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homogeneous shift of the momentum space which could
not change observables. To get rid of such terms fixed by
gauge invariance, we perform the unitary transformation
of the Hamiltonian as H ! H̃ � UyHU with

U � exp
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∂
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Using the condition L1,2�l1,2 ø 1, we expand H̃ up to
the second order in the coordinates and obtain
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Equation (4) indicates that the effects of SO coupling in
the leading order at eZ � 0, and of the orbital magnetic
field are somewhat similar. This similarity is not a coin-
cidence—in the leading order, the direction of the spin
follows the motion of the electron: for an electron mov-
ing along a closed path, its spin spans the closed path, too.
Because of the motion in spin space, an electron accumu-
lates extra Berry phase equal to the solid angle spanned by
the spin. At weak SO coupling, this area is proportional
to the geometrical area encircled by the electron path in
the coordinate space resulting in an effect similar to that
of Aharonov-Bohm flux. This analogy may be put on a
quantitative level by noticing that the two energy scales
characterizing both effects,
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have the same dependence on the shape and the disorder
in the sample. Here, k is the coefficient dependent on the
geometry and A is the area of the dot. Random quantities
Mab are the nondiagonal matrix elements of the magnetic
moment of the electron in the dot.

Term (5) is higher order in the SO coupling constant.
However, it has a different symmetry from �a�; therefore,
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its retention is legitimate. Its physical significance is to
provide the spin flips and, thus, the complete spin relax-
ation, in contrast to �a� which preserves correlations be-
tween spin up and spin down states. Quantitatively, the
effect of �ak is characterized by the scale

e
so
k � ��L1�l1�2 1 �L2�l2�2�eso

� ø eso
� . (9)

The effect of the in-plane magnetic field is described
by Eq. (6). It includes the homogeneous Zeeman split-
ting h�0� and the combined effect of the SO interaction and
Zeeman splitting described by h�1�. The latter can be en-
visaged as a deflection of the effective magnetic field from
the direction given by external �B, and it results in the spin
relaxation associated with the energy scale
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where x
ab
1,2 are the nondiagonal matrix elements of the

dipole moment of the electron in the dot. Quantity Jij
depends on the geometry and on the disorder in the dot
and may be estimated as J 	 DL2�ET, so that eZ

� ø eZ.
A similar energy scale has appeared in recent publications
[2,4]; however, the symmetry of the corresponding term
h�1� was not identified.

Having derived a Hamiltonian free of the gauge invari-
ance constraints on the values of its matrix elements, we
identify the symmetries of all relevant limits. The results
are summarized in Tables I and II depending on the orbital
effect of the magnetic field. In these tables, the conven-
tional parameter b describes time-reversal symmetry of
the orbital motion, s is the Kramers degeneracy parameter,
and S is an additional parameter characterizing the mix-
ing of states with different spins for strong Zeeman split-
ting. Parameters b, S, and s completely characterize the
statistical properties of the transport through the system
as well as spectral correlations of the isolated dot. The
straightforward generalization of the known results, [3],
gives the following description of the two-terminal con-
ductance (measured in units of e2

2p h̄ ) of the dot connected
to the leads by ballistic adiabatic contacts with Nl and Nr
reflectionless orbital channels [1,3]:

�g� �
2SNlNr

�Nl 1 Nr�S 1 � 2
b 2 1�

, (11)
��dg�2� �

µ
s
bS

∂
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b 2 1�� �SNr 1 � 2
b 2 1��

��Nl 1 Nr�S 1 � 2
b 2 1��2��Nl 1 Nr �S 1 � 4

b 2 1�� ��Nl 1 Nr�S 1 � 2
b 2 2��

. (12)
The parametric dependences of the transport coefficients in Eqs. (11) and (12) can be envisaged as a sequence of
crossovers shown below as a function of Zeeman splitting energy and escape rate (increasing along the horizontal and
vertical axes, respectively):
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TABLE I. Symmetries of the system in the absence of orbital magnetic field effect, tB ¿ tesc .

Spin Additional symmetry Symmetry
Zeeman orbit of H̃ � H̃y group b S s Applicability

1 h�0,1� � 0 �a�,k � 0 H̃T � H̃, �H̃ ,s1,2,3� � 0 O�N�≠O�N�
O�N� 1 1 2 eZ, eso
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1�1u� ! 4�4u� ! 7�6u�
" " " g

2�2u� ! 5�5u� ! 8�6u� * (13)

" " % �) eZ

3�3u� ! 6�6u� .

For a large number of channels, 1 ø Nl 1 Nr ø
ET�D, the result of Eqs. (11) and (12) can be simplified:
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and the crossover in weak localization (WL) behavior be-
tween various symmetry classes in Tables I and II sketched
in (13) can be described quantitatively using a diagram-
matic perturbation theory [9], as we outline below for the
WL correction.

For a spin- 1
2 particle in a quantum dot with ballistic adi-

abatic contacts, the WL correction to the conductance can
be related to the lowest-lying modes of Cooperons in a
singlet �L � 0�, P00

C �
1
2 tr�s2Ĝ

T
R �´�s2ĜA�´ 2 v��,

and three triplet �L � 1, 2, 3� channels, PLMC �
1
2 tr�sLs2Ĝ

T
R �´�s2sMĜA�´ 2 v��, as gwl ~ P

00
C 2P

M�1,2,3 P
MM
C (Ref. [9]). In the absence of SO coupling
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and Zeeman splitting, Cooperons PLMC split into com-
pletely independent channels: one singlet and three triplet,
P̂ � d̂P, where d̂ 
 dLM and P obeys the diffusion
equation. The SO coupling and Zeeman splitting mix up
various components [11] and split their spectra, which
modifies the diffusion equation into the matrix equations
P̂P̂� �X, �X 0� � d̂ ? d� �X, �X 0�,

P̂ � gd̂ 2 Dh̄2
µ
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2
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21
2
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1 ieZĥ ,

(15)
where ŜLMK � 2i´KLM are spin-1 operators �K � 1, 2, 3�
and ´KLM is the antisymmetric tensor �K,L,M � 1, 2, 3�.
As a 4 3 4 matrix, Ŝ also has zero elements when L �
0 or M � 0. The other relevant matrix is ĥ, defined
as hLM � lLd0M 1 d0LlM , indicating that coherence be-
tween oppositely polarized electrons is lost on the time
scale of e21

Z . D is the classical diffusion coefficient. Equa-
tion (15) is supplemented with the boundary condition at
the edge of the dot characterized by the normal direction
�nk � �n1,n2�,∑

�nk ? d̂

µ
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The correspondence between random matrix theory
description of a disordered system and diagrams is usually
TABLE II. Symmetries of the system in the presence of orbital magnetic field effect, tB ø tesc .

Spin Additional symmetry Symmetry Applicability
Zeeman orbit of H̃ � H̃y group b S s intervals

1u h�0,1� � 0 �a�,k � 0 �H̃ ,s1,2,3� � 0 U�N�≠U�N�
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�
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transparent in the zero-dimensional (0D) approximation in
the diffusion problem, ET ! `, when the lowest modes
are taken in the coordinate-independent form and coupling
to higher modes is treated as a perturbation. Here, the
boundary condition requires the use of rotation to a local

spin-coordinate system, P̂ � Ô b̃PÔ21, prior to making
the 0D approximation, with Ô � exp�i�Ŝ1X2l

21
2 2

Ŝ2X1l
21
1 �� exp�2iws� �X�Ŝ3� exp�2iwA� �X�� where har-

monic functions w transform the symmetric gauge in
Eq. (4) to such a gauge, where vector potentials on the
boundary are tangential to it. This eliminates the lowest
orders SO coupling terms from the boundary condition,
and, in a small dot [8] L1,2 ø l1,2, can be followed by a
perturbative analysis of extra terms generated by rotation
Ô in Eq. (15). This step results in the 0D matrix equation
for the Cooperon,

P̂ � �gd̂ 1 ieZĥ 1 �d̂
q
t
21
B 2

q
e

so
� Ŝ3�2

1 eZ
��d̂ 2 Ŝ2

3 � 1 eso
k �c�S2 2 Ŝ2

3 ��21. (16)

The form of Eq. (16) is applicable beyond the diffu-
sive approximation as it follows from purely the symmetry
considerations. The difference in the third term in brack-
ets reflects the addition or subtraction of the Berry and
Aharonov-Bohm phases, as was pointed out in Ref. [12].
The expression for the weak localization correction can be

found from Eq. (16) as gwl ~ tr�P̂�d̂ 2 c�S2��. In a dot with
t
21
B � 0 and g, eZ, h̄2D�l2

1,2 ø ET [8], this yields
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so
� 1

e
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, (17)

where we used the fact that eZ
� ø eZ. It is interesting

to notice that the application of the Zeeman field alone
(in plane magnetic field [1]) does not suppress the weak
localization completely at eZ ø ET. In the opposite case
of eZ * ET, it does (though it has to be studied beyond
the universal limit). However, the effect of such a strong
in-plane field on orbital motion becomes already sufficient
to suppress the weak localization [13].

The form of Eq. (17) in the experimentally easier
achievable “high”-energy crossover 1 ! 4 ! 7 is limited
by only the two first terms and suggests a possible
procedure for measuring the ratio l1�l2. By fitting ex-
perimental magnetoresistance data to gwl�eZ� in Eq. (17),
one would determine the characteristic in-plane field
B . For a dot with a strongly anisotropic shape, such a
parameter would depend on the orientation of an in-plane
magnetic field. In particular, B can be measured for two
orientations of �B � B�l: namely, B�110� for �l � �110� and
B�11̄0� for �l � �11̄0�. One should also make a simultane-
ous measurement of two characteristic fields B

0
�110� and

B
0
�11̄0� in a dot produced on the same chip by rotating the

same lithographic mask by 90±. The anisotropy of the SO
coupling can then be obtained directly from the ratio
256801-4
�B�110�B
0
�110��B�11̄0�B

0
�11̄0�� � �l1�l2�4,

independently of the details of sample geometry.
The other interesting feature may be observed in the

weak localization gwl in the regime of a crossover 2 ! 2u
driven by a weak perpendicular magnetic field for eZ � 0.
Since the SO coupling effect in Eqs. (4) and (16) acts as
a homogeneous magnetic field distinguishing between up-
and down-spin electrons, the external field can be used
to compensate the effect of the SO coupling for one spin
component [12], which would produce a dip in the weak
localization correction. Indeed, at g ø e

so
� , the function

2gwl

j
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k

�g 1 t21
B � �g 1 t21

B 1 2eso
k �

2
g�g 1 t21

B 1 e
so
� 1 e

so
k �

�g 1 t21
B 1 e

so
� 1 e

so
k �2 2 4t21

B e
so
�

(18)

has a minimum at the value of the field 2eBz �
ch̄��l1l2�, independently of the sample geometry, which
should provide a very accurate measurement of l1l2.
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