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Indispensable Finite Time Corrections for Fokker-Planck Equations from Time Series Data
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The reconstruction of Fokker-Planck equations from observed time series data suffers strongly from
finite sampling rates. We show that previously published results are degraded considerably by such
effects. We present correction terms which yield a robust estimation of the diffusion terms, together
with a novel method for one-dimensional problems. We apply these methods to time series data of local
surface wind velocities, where the dependence of the diffusion constant on the state variable shows a
different behavior than previously suggested.
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When dynamical phenomena involve only a few degrees
of freedom, the underlying equations of motion can be
estimated from time series data. Within the framework of
nonlinear time series analysis [1] this has attracted large
attention during recent years [2,3]. In these and many
other approaches, the deterministic part of the dynamics
has been in the focus of interest. Using models of different
levels of sophistication, many time series data have been
shown to be predictable beyond the mere effect of linear
correlations.

Recently, it was suggested that also the stochastic com-
ponents in the time evolution of observables might possess
interesting properties and hence should be extracted from
data. The idea followed in [4] is that a Fokker-Planck
equation rules the time evolution of the phase space den-
sity r� �x, t� of a process, according to

�r � 2=D�1�r 1 =2D�2�r , (1)

where the deterministic contribution D�1� is called the drift
term, and D�2� is the diffusion tensor. The assumption
of Refs. [4–7] is that a corresponding Langevin equation
exists and has its solution in the individual trajectory which
is represented by an observed time series:

��x � f� �x� 1 G� �x�G , (2)

where �x [ Rd is the d-dimensional state vector, f a vector
field representing the deterministic force, and G a d 3 n
tensorial function on the state space governing the noise
inputs. G is a n-dimensional Gaussian white noise pro-
cess with �Gk�t�Gk 0�t0�� � 2dk,k 0d�t 2 t0� following the
convention of Risken [8]. If this equation is interpreted
in the Stratonovich sense, Eq. (1) is the corresponding
Fokker-Planck equation, with D

�1�
i � fi 1 Gkj

≠

≠xk
Gij and

D
�2�
ij � GikGjk, where the contraction eliminates the di-

mensionality n of the noise process. A solution of the
Langevin equation contains information about both D�1�

and D�2� which was determined in [4–7] by the following
estimators:

D�1���x� � lim
D!0

1
D

��xt1D 2 �xt��x , (3)
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D�2���x�ij � lim
D!0

1
2D

���xt1D 2 �xt�i��xt1D 2 �xt�j��x , (4)

where �· · ·��x denotes the conditional average that �xt � �x.
The right-hand sides of Eqs. (3) and (4) are the time series
estimates of the first and second moments of the condi-
tional probability density P� �x, t 1 D j �x0, t�, which in the
limit of D ! 0 are shown to yield D�1� and D�2� in [8].
Hence, in an elegant way D�1� and D�2� can be estimated
also in situations where the time series does not represent
a stationary density r��x, t� � r��x�.

The rather evident contamination of the estimated diffu-
sion terms in [5–7] with contributions from the squares of
the drift terms suggests that in applications of this method
to data sets stemming from hydrodynamic turbulence and
stock markets the convergence for D ! 0 of the numerical
estimates based on Eqs. (3) and (4) has not been checked
and that, in fact, non-negligible corrections have to be em-
ployed in order to get reliable estimates of D�2� from time
series data with finite D. Taking for granted that D in a time
series is sufficiently small to represent properly the limit,
one can find diffusion terms whose state dependences are
mere artifacts, as we will show below. The drift terms,
however, can be rather safely estimated by Eq. (3) [9].

In the remainder of this paper we present the novel fi-
nite D corrections for a robust estimate of D�2�, we propose
a Fokker-Planck based new estimate for one-dimensional
problems, and we illustrate these findings by numerical
examples. Finally, we apply the method to field mea-
surements of surface wind velocities, thereby demonstrat-
ing that substantial corrections to the previously published
results on turbulence arise from the application of our
method.

Let a time series of state space observations � �xt, t �
1, . . . , T� with a temporal spacing D (also called the sam-
pling interval) be the solution of the Langevin equation
(2). In the following we will restrict ourselves to a one-
dimensional state space, but the generalization is straight-
forward when not otherwise said. If we are not explicitly
assuming that the state space density r has reached its
asymptotic, time invariant limit, we cannot employ the er-
godic theorem in order to convert the time series into the
© 2001 The American Physical Society 254501-1
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density r. Hence, without this assumption, we have to
consider explicitly the time evolution of a different rather
than the full state space density. In fact, the transition
probability P�x, D j x0, 0� is time invariant. For small D it
reads [8]

P�x, D j x0, 0� �
1p

4pD�2��x0�D
e

2 �x2x02D�1��x0�D	2

4D�2��x0�D . (5)

Computing its second moment for nonvanishing D yields
the following improved estimate of D�2�:

D�2� 

1

2D
��� �xt1D 2 �xt� ��xt1D 2 �xt�y��x

2 D2D�1�D�1�y	 . (6)

Depending on the relative magnitude of drift and diffusion
and on the value of D, the estimate of D�2� can become
fairly bad if one ignores the existence of the rightmost term
of Eq. (6). This correction takes into account that a bundle
of trajectories emerging from x�t � 0� � x0 spreads ac-
cording to

p
DD�2�, but simultaneously experiences a dis-

placement proportional to D due to the drift. Consequently,
for infinitesimal D, Eq. (4) is recovered. For finite D,
Eq. (4) is strongly biased by the square of the drift term.

The numerical example presented below shows that this
is not the only correction to D�2� of order D. The second
relevant correction is a nonlocal effect. Imagine starting
the previously mentioned bundle of initial conditions ex-
254501-2
actly on the barrier of a double well potential: as soon
as this packet starts to spread out due to the diffusion,
the trajectories on either side of the potential barrier begin
to experience a drift towards the potential minima, thus
enhancing diffusion, but leaving the mean value of this
sample unchanged. Exactly the opposite phenomenon of
suppressed diffusion occurs at a potential minimum. These
are of cause finite D effects. Intuitively, the curvature of
the potential should introduce a correction to the diffusion
term.

We hence have to discuss the finite time solution of
the Fokker-Planck equation, where the initial condition
is a d peak at �x0. Introducing the abbreviation D�1�0 :�
d�dxD�1��x�, it is straightforward to verify that

r�x, D� �
e

2 �x2x0 2D�1��x0�D	2

4D�2�D�11DD�1�0�x0 �	p
4pD�2��x0�D�1 1 DD�1�0�x0�	

(7)

satisfies this initial condition, it conserves total probability,
and inserted into the Fokker-Planck equation it cancels the
D�1�0r�x� term, which survives when doing the same with
Eq. (5) [10]. The correction factor 1 1 DD�1�0 can, as
expected, enhance or suppress diffusion, depending on the
sign of the derivative of the drift term. One evident limit
for the validity of this approximation is DD�1�0�x0� ø 21.

In the numerical scheme, one computes the estimates of
D�1��x� and its numerical derivative with respect to x, the
latter most conveniently after fitting a smooth curve to the
empirical values of D�1�. Then the following estimate for
the diffusion term holds for short but finite D:
D
�2�
ij �

��� �xt1D 2 �xt�i� �xt1D 2 �xt�j� �x 2 D2D
�1�
i � �x�D�1�

j � �x�	

2D�1 1 D
dD

�1�
i ��x�

dxj
�

. (8)
Since the prefactor D of the derivative of D�1� cancels the
D in the normalization of D�1�, the knowledgeofD inphysi-
cal units is not required for a correct estimate of D�2�, both
D�2� and D�1� can be measured in arbitrary temporal units.

We demonstrate the need for our corrections and their
accuracy employing the example of [4]. An overdamped
particle in a double well potential with stochastic inputs is
described by the Langevin equation

�x � 0.1x 2 x3 1 aG , (9)

where G is again white noise. The drift and diffusion
terms of the corresponding Fokker-Planck equation (where
Ito and Stratonovich calculi are equivalent) read D�1��x� �
0.1x 2 x3 and D�2��x� � a2. Figure 1 shows the differ-
ent estimates of the diffusion term, together with the drift
term, for D � 0.5. Evidently, without correction, the dif-
fusion constant seems to have a complicated space depen-
dence, one part of which is the square of the drift term.
After proper subtraction of the latter, however, the fac-
tor 1 1 D

d
dx D�1� is needed for a correction of comparable

magnitude.
In one-dimensional problems we suggest an alterna-

tive method to calculate D�2��x� by exploiting the Fokker-
Planck equation directly: If the time series represents an
invariant density, this implies �r � 0 and henceZ x

2`

d
dx0

D�1��x0�r�x0� dx0 �
Z x

2`

d2

dx02 D�2��x0�r�x0� dx0.

(10)

If r�x� decays exponentially and drift and diffusion behave
algebraically, the integrals vanish at their lower limits. Es-
timating the drift term as before and the density r�x� in a
straightforward way allows one to determine the diffusion
term through the numerical evaluation of

D�2� �

Rx
2` D�1��x0�r�x0� dx0

r�x�
, (11)

if we assume again that D�2��2`�r�2`� � 0. Let us point
out that here the temporal sampling interval D enters only
through the accuracy of the estimate of the drift term D�1�;
hence this method is particularly suited for large D.

For the motion in the double well from above, we find
the results depicted in Fig. 2 for the diffusion term, for the
same D as before. They agree very well with the given D�2�.

Following the pioneering work of [5,6], we now apply
our new corrections in a different setting, namely to data
from turbulence and their scale dependence. Let us ana-
lyze the scale-to-scale evolution of the distribution P�ur � of
254501-2
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FIG. 1. Drift term [upper panel, together with the invariant
density r�x�] and diffusion term (lower panel) obtained from
time series data of Eq. (9). While the drift term is estimated
reasonably well for this sampling rate D � 0.5, the estimate of
Eq. (4) yields a false space dependence of the diffusion term,
which is successfully corrected by Eq. (8).

velocity increments ur�x� � u�x 1 r� 2 u�x�. It was found
in [5] that the r evolution of the distribution can be de-
scribed by a Markov process. The Markovian property has
been evaluated by the investigation of conditional proba-
bilities P�ur2 , r2 jur1 , r1�, with r2 , r1. The stochastic
dynamics has been estimated from measured data apply-
ing the following procedure: First the Markovian prop-
erty was checked by evaluating the Chapman-Kolmogorov
equation for the P�ur2 , r2 j ur1 , r1�:

P�ur2 , r2 j ur1 , r1� �
Z `

2`
P�ur2 , r2 j ur 0 , r 0�

3 P�ur 0 , r 0jur1 , r1� dur 0 . (12)

Then a Fokker-Planck equation was set up as

2
≠

≠r
P�ur , r� �

µ
2

≠

≠ur
D�1��ur , r� 1

≠2

≠u2
r

D�2��ur , r�
∂

3 P�ur , r� , (13)
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FIG. 2. The estimate of D�2��x� from Eq. (11).

with coefficients defined in accordance with Eq. (4)

D�k��ur , r� :� lim
d!0

M�k��ur , r, d� ,

M�k��ur , r, d� :�
1
k!

1
d

Z
�ur 0 2 ur �k (14)

3 P�ur 0 , r 0 j ur , r� dur 0 ,

where d � r 2 r 0. We will follow this procedure, but
apply our corrections.

We use data of atmospheric surface wind velocities
recorded on the Lammefjord on the island Seeland in Den-
mark. The terrain around the measurement station is very
flat and no major obstacles interfere with the fluid flow.
One component of the wind velocity was recorded with a
sampling rate of 16 Hz using an ultrasonic anemometer
located at an altitude of 40 m during a period of 24 h.
A typical time series of the wind velocity is shown in
Fig. 3. Using the method of extended self-similarity [11]
the structure functions up to order five where estimated
and the calculated scaling exponents show reasonable
agreement with the expected values for three-dimensional
turbulence. Also the power spectrum obeys the expected
(25�3) scaling behavior. In this sense our time series are
a “good” representative for fully developed turbulence. In
Fig. 4 the probability density functions (pdf’s) P�ur� of
ur �x� are shown. We observe the well known intermittency
effect of isotropic turbulence; i.e., we find exponential
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FIG. 3. Part of the wind data used.
254501-3



VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001
−6 −4 −2 0 2 4 6
ur

10
−4

10
−3

10
−2

10
−1

10
0

P
D

F
(u

r)

r=1.3m

r=4m

r=20m

FIG. 4. PDF for different separations r .

behavior at small scales and almost Gaussian behavior at
large scales. We have checked the Chapman-Kolmogorov
equation in Fig. 5 and found reasonable agreement, hence
confirming the Markov property of fully developed turbu-
lence. As a last step, we calculated the drift and diffusion
coefficients. The drift coefficient shows a linear behavior
in agreement with [5]. In Fig. 6 we compare the estimates
of the diffusion coefficients obtained with Eq. (4) to
our improved estimates Eq. (8). We find a significantly
shallower slope of the corrected graphs. If one assumes
a quadratic behavior of D�2��ur� � a 1 bur 1 gu2

r as
done in Renner et al. [12], one hence obtains important
corrections for b and g. Actually, Renner et al., by
integrating the Fokker-Planck equation using their fitted
values of D�2�, report already that their method yields too
large values for b and g.

In summary, from an improved expression for the tran-
sition probability P��x0, t 1 D j �x, t� for finite D, we obtain
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FIG. 5. Test of the Chapman-Kolmogorov equation for differ-
ent values of ur1 � 21m�s; 0m�s; 1m�s; bold symbols repre-
sent directly evaluated pdf, open symbols integrated pdf.
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FIG. 6. Diffusion coefficient for different separations r; stars
correspond to the naive method and squares to the corrected
estimate.

an important correction for the estimate of the diffusion
term in a Fokker-Planck equation from time series data,
whose relevance is evidenced by a numerical example and
by surface wind velocity data.
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