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We observe powder “droplets” forming when tapping repeatedly a horizontal flat plate initially covered
with a monolayer of fine powder particles. Starting from a simple model involving both the air flow
through the porous cake and avalanche properties, we set up an analytical model which satisfactorily fits
the experimental results. We observe a close analogy between the governing equations of the phenome-
non and the basic physics of wetting liquids, including the equivalent of the Laplace law and the surface
tension parameter leading to the well known Rayleigh-Taylor instability.
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In a recent past, most of the theoretical, experimental,
and simulated works dealing with the physics of granular
materials have considered collections of large solid par-
ticles (i.e., typically larger than 100 mm) or smaller par-
ticles under vacuum. This simplification allowed one to
neglect the complex interaction of the surrounding gases
or fluids with the moving solid particles [1]. On the other
hand, the dynamical behavior of fine powders interact-
ing with gases or liquids is recognized as the keystone
of a large number of technological processes, e.g., in fine
chemicals and pharmaceuticals, ceramics, and food indus-
try. In nature, huge fields of well known patterns such
as dunes and ripples result from sand-wind interaction in
deserts or sand-water interaction on sea shores.

In this spirit, an increasing number of current works
deals with the interaction of granular species with inter-
stitial fluids [2] and with the effects of reduced particle
size (e.g., [3–5]). Among others, a recent paper [6] enu-
merates the complex series of harmonic patterns obtained
when vibrating deep beds of relatively small size particles.
The authors mentioned that the patterns depend on the par-
ticle size (ranging between 60 and 1000 mm).

The situation is different here. It follows a recently pub-
lished paper [5] reporting experiments and a model of the
steady state patterns generated by tapping repeatedly, at a
low pace and from below a flat container half-filled with a
deep bed of fine powder of tiny silica particles in the range
of 10 mm. Using fine powder particles ensures a signifi-
cant air-granulate interaction because the free fall velocity
yf of these small size particles (yf � D2rg�18h, where
D and r are the diameter and density of the particles, h

is the air viscosity, and g the gravitational acceleration) is
of the same order of the forced velocity of the particles
due to the external perturbation. Moreover, using taps at
a low pace provides a simplification because it allows the
system to relax between successive excitation avoiding in-
tricate coupling to vibrational modes. We reported that,
under these circumstances, a quasiperiodic and steady state
corrugated pattern spreads out with a characteristic wave-
length proportional to the amplitude of the taps. We ex-
plained that the instability happens because, contrary to
intuition, particles are more easily ejected by the air blow
1 0031-9007�01�87(25)�254301(4)$15.00
from the tops than from the sides of the heaplets (Fig. 1)
inducing a sort of “volcano effect.” The resulting pattern
was analyzed in terms of a cutoff length which character-
izes the competition between the downstream avalanches
and the upcoming particles ejected by the trapped air flow.

Keeping along the same line, we consider now a thin
slice of a fine powder (particle diameter: 10 to 50 mm)
spread out over a flat plate. When gently tapping repeat-
edly and at constant intensity onto the plate, we observe
the formation of a collection of separate rounded conical
heaps looking like droplets of powder evenly spread over
the plate. The resulting pattern strikingly reminds one of
the Rayleigh-Taylor instability illustrated by the droplet
structure obtained when turning up a glass plate initially
covered with a thin film of a wetting liquid. As we will
show in the following, this analogy is not fortuitous. It re-
sults from an underlying similarity between the equations
governing the wetting properties of liquids and the behav-
ior of powder piles interacting with a surrounding fluid.

Several basic characteristic features of the instability of
a tapped thin film of powder can be readily observed start-
ing from a simple tabletop experiment: Using a small
leucite ruler equipped with thin spacers (thickness slightly
larger than the diameter of the particles D), we spread
a quasimonolayer slice of powder (dry silica beads SDS,
diameter D � 10 to 50 mm) over a flat glass plate (size

FIG. 1. Sketch of the trajectories of the powder particles par-
ticipating in the intrinsic convection process when the heaplet is
ejected above the plate resulting from either taps or air blowing
from below.
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60 3 90 mm2). This glass plate is kept horizontal and se-
cured on its periphery using a latex band which allows a
certain degree of freedom for up and down motions. Us-
ing a small metallic or plastic rod, we knock gently and
repeatedly at a very low pace (e.g., a tap per second) and
at a constant intensity against one corner of the glass plate,
applying vertically as brief taps as possible. After a few
taps (about 10 to 20), the surface, initially flat, smooth,
and horizontal, separates into a collection of tiny rounded
conical heaps (Fig. 2). Starting from the same initial con-
ditions but tapping more energetically while keeping the
intensity as constant as possible from one tap to the next,
induces a pattern with bigger heaplets separated by a larger
distance. Note that humidity or excessive grain-grain co-
hesive forces prevents the observation of these patterns.

Setting a CCD (charge coupled device) camera above the
plate in order to record and process the patterns allows one
to get reliable data. A magnetically driven tapping device
and a commercial Bruer and Kjaer accelerometer stuck on
the plate in the vicinity of the sample is used in order to
monitor the acceleration of the taps. Typical experimental
results are reported in Fig. 3 which exhibits both the results
of the mean separation distance measurements between
adjacent heaplets as a function of the taps acceleration
as well as a best fit with the theoretical model described
below [7].

First we look for a relationship between the height of
the approximately identical conical piles and the mean dis-
tance separating them. Consider the initial situation when
a thin slice of powder of thickness e made of small spheri-
cal beads (diameter D) is evenly spread over a horizontal

FIG. 2. (A) Bird’s eye view of the pattern obtained after 40
taps over a plate initially covered with a nearly uniform film
of powder particles (dia. about 30 mm). The mean separation
distance between neighboring heaps is about 5 mm. (B) The
snapshot shows an enlarged (53) oblique view of a few small
heaps. It exhibits the rounded shape of the apices due to the
“volcano effect.”
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flat surface whose area is S. Suppose now that the pow-
der has been gathered in a number of N disjointed iden-
tical conical piles having an angle u to horizontal and
culminating at altitude h. These piles are evenly dis-
tributed over the area S. Because of volume conserva-
tion, the number N of these piles is approximately given
by N � 3Se tan2u�ph3 ~ h23. The mean separation dis-
tance L of this pattern is the square root of the mean area
occupied by each pile

L �

r
p

3e tan2u
h3�2 ~ h3�2. (1)

In connection with Faraday’s [8] and more recent au-
thors’ [9] experimental observation of the powder heap-
ing and the associated convection, we have shown [5] that
when a conical powder pile undergoes a ballistic flight and
falls down, we can distinguish between two regions, delim-
ited by a circle at altitude hC (Fig. 1). The lowest region
is stable against the upcoming air flux because it is stabi-
lized by the lateral avalanches (0 # h , hC). Around the
apex we found an unstable part (hC # h # hT ) (T for top)
where grains are expelled by the upcoming air flux. The
dimensionless parameter C measures the proportion of the
unstable part of the heap, so that C � �hT 2 hC��hT . C
has been conjectured to be independent of the shock ac-
celeration [5]. In other words, the steady state of a pattern
sketched in the left hand side part of Fig. 1 results from
the balance between the number of expelled particles near
the apices and the number of particles which are reinjected
into the bulk of the heaps at every tap.

Considering a particle sitting at altitude hC on the side
of the conical heaplets, we found that the velocity of the
upcoming air flux at altitude hC required to eject this par-
ticle is given by

yhC �
KDP

hhC
� yf

C

1 2 C

hCp sinu

D
, (2)

FIG. 3. Experimental results obtained with a monolayer slice
of silica powder (particle size about 35 mm). The dashed line is
a theoretical best fit to Eq. (6) where DP is expected to be pro-
portional to the taps acceleration because the heaplets undergo
a ballistic flight. Error bars correspond to five series of experi-
ments using the same material and the same powder thickness.
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where K is the permeability of the powder and DP the
pressure difference acting over the granular porous cake,
due to the air compression when the pile falls down. p is
the number (typically 5) of sheets possibly involved in the
avalanches. Thus we find the basic equation governing the
problem:

KDP

DhC
� r

µ
1
18

C

1 2 C
p sinu

∂
ghC . (3)

Written in this form, Eq. (3) can be seen as describing
the balance between two antagonistic pressures as follows.

(i) A “hydrostatic” pressure Pg � r�ghC which ac-
counts for the screening effect of the avalanche properties
of the powder where r� � r� 1

18
C

12C p sinu� is the normal-
ized density of the particles participating in the avalanches.
Note that r� explicitly depends on the micromechanical
characteristics of the particles because of the presence of
both C and p in this equation.

(ii) The equivalent of a Laplace-Young pressure, Pl (de-
scribing the pressure difference at the interface of two liq-
uids) which can be written

Pl �
KDP
DhC

� g�

µ
2

hC

∂
, (4)

where g� plays the role of a surface tension and is defined
by g� �

KDP
2D .

In brief, Eq. (3) describes the equilibrium of the ana-
log of a wetting liquid droplet [10] on a horizontal plate.
Thus, we treat a conical powder heaplet as a half spherical
wetting material of height hC and curvature 2�hC . This
ersatz displays a surface tension (or capillary forces) g�.
This analog to a surface tension can be seen as resulting
from the convective forces [11] which drag powder par-
ticles from the surrounding surface(s) and subsequently
inject them into the powder pile. This sort of sucking ef-
fect mimics the effect of capillary forces in liquids which
tend to gather liquid films into droplets or bubbles. There-
fore, the equivalent surface tension of the powder pile has
a purely dynamical origin in this situation since it results
from the convective forces related to the volcano effect.
From Eq. (3), we get hC from the following relationship:

hC �
µ

KDP
D

1
r�g

∂1�2

�

µ
2g�

r�g

∂1�2

. (5)

Going on with the analogy to wetting liquids [10], we
can also define the usual capillary length l equating the hy-
drostatic pressure and the Laplace-Young pressure so that
254301-3
l � �g��r�g�1�2 � hC�
p

2 and a related Bond number
Bo � �r�gh2

C�g��.
Now, using Eq. (1), we find

L �

r
p

3e tan2u

µ
KDP

D
1

r�g

∂3�4

�

r
p

3e tan2u

µ
2g�

r�g

∂3�4

.

(6)

Figure 3 reports a best fit of a series of experimental
results obtained with the previously cited powder to this
equation.

Here a numerical estimation of the involved parame-
ters is imperative. We calculate an approximate value for
the surface tension g� starting from Eq. (6) using typical
values for L � 5 mm, e � 20 mm, and r� obtained for
C � 5%. We get g� � 2.3 3 1025 N m21 which means
that this constant is about 3000 times smaller than the sur-
face tension of pure water. As expected, l and hC are in
the order of 1 mm. Moreover, using Eq. (4) we can get
an estimated value for the pressure difference between the
altitude hC and the base. First, we consider that the per-
meability of the granular material is a fraction of the cross
sectional area of a single particle. Thus, we get DP in the
order of 3 Pa. This quantity should be a fraction of the
maximum possible air pressure due to the total weight of
the powder pile leaning on the basis surface S. Indeed, this
maximum air pressure is found to be about 10 Pa which is
a correct order of magnitude.

Table I summarizes the analogy between the basic equa-
tions governing the powder heap equilibrium and the equa-
tions governing the equilibrium of liquid droplets.

Now, starting from this analogy and using Eq. (3), we
can transcribe the classical demonstration of the Rayleigh-
Taylor instability for wetting liquids. The standard analysis
consists in examining the evolution of an infinitesimal si-
nusoidal distortion of the initially flat surface. Note that the
basic calculation for liquids (found in textbooks) leads to
a wavelength (the mean separation distance, here) depen-
dence L ~ �g�rg�1�2. Here the distortion is by no means
infinitesimal. We rather introduced the volume conserva-
tion condition which leads to L ~ �g��r�g�3�4. However,
except for this difference, the underlying phenomenology
of the blown powder mimics the standard Rayleigh-Taylor
instability.

Along the same lines, still proceeding with the analogy
of the inner pressure within a powder heap given by Eq. (4)
which mimics the Laplace-Young law, we predict that if
two powder heaps of unequal sizes are sitting next to each
other, the smaller one would be sucked into the larger one
TABLE I. Basic equations for a wetting liquid and a blown powder.

Wetting liquid Equation Blown powder heap Equation

Surface tension g �
dF
dl Convective forces g� �

KDP
2D

Droplet radius R Heap height hC

Laplace law DP � 2g

R Eq. (4) DP� � 2g�

hC

Droplet equilibrium 2g

R � rgR Blown heap equilibrium 2g�

hC
� r�ghC
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FIG. 4. Above, sketch of a basic experiment showing that the
inner gas pressure is larger in a smaller droplet. When two
bubbles are connected by a small pipe, the small bubble is sucked
into the largest one. Below, the bird’s eye view of an experiment
showing the fusion mechanism among tapped powder heaps.
The smaller heaps are sucked into the largest heap in agreement
with Eq. (4).

just as this occurs between two communicating bubbles.
An experimental result shows this in Fig. 4.

Even if it has the merit to establish a connection between
the (yet unknown) description of blown powder properties
and the (already known) wetting liquid behavior, our theo-
retical explanation certainly lays itself open to several criti-
cisms. In particular, it does not convey any information
regarding the development of the surface instability. Such
an analysis would involve the introduction of the equiva-
254301-4
lent of a powder viscosity, which is not considered in the
present model dealing with the steady state of the process.
A time-resolved scrutiny of the pattern growth would prob-
ably convey information about this question. I postpone
the description of this study to a forthcoming paper.

I am grateful to R. Jacobs, E. Raphael, I. Aronson, and
the granular group in Jussieu for stimulating discussions.
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