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Fractal Properties of Robust Strange Nonchaotic Attractors
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For a simple class of quasiperiodically forced dynamical systems, we present a rigorous result support-
ing the idea that the attractors for this class of systems, although nonchaotic, are strange in the sense that
their box-counting dimension is two while their information dimension is one. Furthermore, this result is
stable to changes of the system, suggesting that the basic features leading to it may be present in typical

quasiperiodically forced systems.
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The external forcing of a nonlinear dynamical system is
of general interest in many situations. For example, tem-
porally periodic forcing can lead to the phenomenon of fre-
quency locking and may also induce chaotic evolution of
otherwise nonchaotic systems. Temporally random forc-
ing causing escape of a particle from a potential well is
a classic model in chemical kinetics. Between temporally
periodic and random forcing is the case of quasiperiodic
forcing, the case of interest in this paper.

A key aspect of quasiperiodic forcing of a nonlinear
dynamical system is that it appears to make possible a
fundamentally different kind of motion not seen in pe-
riodically forced systems. In particular, typical quasi-
periodically forced nonlinear systems appear capable of
supporting attractors that are nonchaotic (i.e., possess no
positive Lyapunov exponents), yet at the same time are
geometrically strange in that they exhibit nontrivial fractal
properties. The possible existence of such strange non-
chaotic attractors in quasiperiodically forced systems was
originally pointed out in Ref. [1], and there has since been
much analysis and numerical experimentation [2,3] as well
as laboratory experimental realizations (e.g., Ref. [4]). Re-
cently there have also been rigorous results on the mathe-
matical properties these strange nonchaotic attractors must
have if they exist [5].

In spite of these previous works, a very basic question
still remains: Can it be shown analytically that strange
nonchaotic attractors exist in a typical quasiperiodically
forced system, and are they robust? Here, by robust we
mean that arbitrarily small changes of the system cannot
cause the strange nonchaotic attractor to no longer exist.
The previous literature [1—4] certainly suggests that the
answer to the question is yes, but can we really be sure?
References [1,2] prove the existence of strange nonchaotic
attractors for a particular class of quasiperiodically forced
systems, but this class is such that an arbitrarily small
change of the system can put it out of the class. The nu-
merical and experimental evidence for strange nonchaotic
attractors in typical quasiperiodically forced systems [3.,4]
is very strong, but perhaps the attractors observed are
nonstrange with very fine scale structure (rather than the
infinitesimally fine scale structure of a truly strange attrac-
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tor). Also there might be the worry that the numerical
evidence is somehow an artifact of computational errors.
In this paper we address these concerns by examining the
behavior of a simple class of quasiperiodically forced sys-
tems for which rigorous results are accessible. Further-
more, we demonstrate the nature of the strangeness of these
attractors.

In general, a two-frequency quasiperiodically forced
system of ordinary differential equations can be written in
the form dx/dt = F(x, &,0), where F is 27 periodic in
the angles ¢ and €, which are given by & = wgt + &,
0 = wgt + 0, and wg and wy are incommensurate.
Sampling the state of the system at the times ¢, given by
¢ = 2nm, the ordinary differential equation system yields
a mapping of the form 6,,.; = (0, + w)mod 27, X+ =
F(x,,6,), where x, = x(t,,), o = 2mwp/wg, and we
assume wy/wg is irrational [for our numerical work
wy/we = (/5 — 1)/2, the golden mean]. In what fol-
lows we examine the simplest case where the state variable
X is one dimensional. Specifically, we take x to be an
angle ¢ and we consider the map of the two-dimensional
0-¢ torus,

0,+1 = (0, + w)mod 27, (1a)
Pn+1 = [Gn 2 ﬂP(Gn, Qon)]mOdZW, (1b)

where P(6, ¢) is continuous, differentiable, and 27 pe-
riodic in both of its arguments. For 7 small enough,
|p| < m., this map is invertible [solvable for (6,, ¢,)
given (0,41, n+1)]. For P(6, ¢) = sing, which we use
in our numerical work, the system is invertible if |n| < 1.

A crucial property of the map (1) is illustrated in Fig. 1.
Figure 1 shows the 6-¢ toroidal surface with a curve C
drawn on it. Note that C circles around the torus in the
direction, but does not wrap around the torus in the ¢ di-
rection. After one iterate of (1), the curve C is mapped to
a curve C' that wraps once around the torus in the ¢ direc-
tion. Applying the map to C’ produces a curve with two
wraps around the torus in the ¢ direction, and so on. This
behavior comes about due to the term 6,, on the right-hand
side of (1b), because § + ¢ + mP(6, ¢) increases by 27
as @ increases by 2.
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FIG. 1. Torus unwrapped in the 6 direction (§ = 0 and 6 =
27 are identified with each other). The map (1) takes the curve
C to the curve C'.

A trajectory of the map (1) has two Lyapunov exponents
hg and h,, where hy = 0 is associated with (1a) and &,
is associated with (1b). The latter exponent is given by the
formula,

he = [ In[1 + nP,(0,¢)]du, (2)

where P, = dP/d¢, and u denotes the measure gener-
ated by the orbit from a given initial point (6o, ¢o).

If by, > 0 for a particular trajectory, then, since iy = 0,
the map exponentially expands areas near the trajectory
in the limit n — . Since the #-¢ torus has finite area
(namely, 47r?), if the map is invertible, then there cannot
be a set of initial points with positive area that have expo-
nential area expansion along their trajectories. Therefore
the set of initial points for which h, > 0 has zero area
(Lebesgue measure zero), and the map thus does not have
a chaotic attractor.

Our main results are as follows: For |n| < 7., (i) the
map (1) has a single attractor; (ii) for typical P(6, ¢),
the attractor has a Lyapunov exponent &, that is negative
for n # 0; (iii) the attractor has information dimension
one for n # 0; (iv) the attractor is the entire #-¢ torus
and, hence, has box-counting dimension two [6]; (v) these
results are stable to perturbations of the system [7].

For (ii) we do not have a rigorous proof; rather, we have
an approximate analytical formula for 4, for small 7, and
we show that it agrees well with numerical results. If we
accept this, then (iii) follows [8]. Our proof of (i) and (iv)
and their stability to perturbations (v) is mathematically
rigorous.

Results (iii) and (iv) quantify the strangeness of the
attractor. In particular, by (iii), orbits spend most of their
time on a curvelike set; yet, by (iv), if one waits long
enough each orbit eventually visits any neighborhood on
the -¢ torus. One can get a sense of this result from
the numerical orbit shown in Fig. 2, in which a trajectory
of length 10* appears to be concentrated along one-
dimensional strands [Fig. 2(a)], but for the same parame-
ters a trajectory of length 10° fills much more of the 6-¢
torus [Fig. 2(b)].
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FIG. 2. Trajectory of the map (1) with w = (V5 — 1), n =
0.3, and P(6, ¢) = sing. In each case 6y = ¢y = 0 and 10*
points of the trajectory are computed before plotting; in (a) the
next 10* points are plotted, while (b) shows 10° points.

A numerical experiment to determine the information
and box-counting dimensions both illustrates points (iii)
and (iv), and indicates why it is hard to obtain convincing
conclusions for the dimension values based only on nu-
merics. We show in Fig. 3(a) a plot of log,N(e) versus
log,(1/¢), and in Fig. 3(b) a plot of >_ p; log,(1/p;) ver-
sus log,(1/¢). Here N(g) is the number of ¢ X & boxes
(in 6-¢ space) needed to cover the points from an orbit
of length 7, and p; is the fraction of those orbit points
in the ith € X & box. According to claim (iv) [claim
(ii1)], in the limit T — o, the points in Fig. 3(a) [Fig. 3(b)]
should follow a straight line of slope two [one] for small €,
corresponding to a box-counting [information] dimension
of two [one]. As is commonly found, the box-counting
dimension computation converges rather slowly with in-
creasing orbit length 7. Thus, we show plots in Fig. 3 for
several different 7. As can be seen in Fig. 3(a), the € range
consistent with a slope of two (the straight line in the fig-
ure) steadily increases toward smaller & [larger log(1/¢)]
as T increases. This is in contrast with Fig. 3(b), which
appears to reach a form independent of 7' that is consis-
tent with a small & slope of one. While the convergence
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FIG. 3. Dimension computations for (1) with = 0.5, w =

7(/5 — 1), and P(0, ¢) = sing. In (a) the dashed line has
slope two, while in (b) it has slope one. In each graph, the
curves from lowest to highest represent T = 103, 10%,...,10'%;
in (b) the final five curves are virtually identical.
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in Figs. 3(a) and 3(b) is consistent with box-counting and
information dimensions of two and one, the slowness of
the convergence also indicates that a purely numerical de-
termination of the dimension values is suspect. Next we
give a heuristic argument for (ii), from which (iii) follows,
and a proof for (iv).

To see that i, < 0 for small nonzero 7, consider first
the case 7 = 0, for which (1b) becomes ¢,+1 = (0, +
¢©,) mod 27r. If we initialize a uniform distribution of orbit
points in the 6-¢ torus then, on one application of the
n = 0 map, the distribution remains uniform. Further-
more, this uniform distribution is generated by the orbit
from any initial condition. To verify this, we note the ex-
plicit form of an 7 = 0 orbit, 6, = (g + nw)mod 27,
on = [@o + np + 2(n* — n)w]mod 27, which is
shown to generate a uniform density in Ref. [9]. We can
obtain an approximation to i, for nonzero but small n by
expanding In(1 + nP,) in (2) to order ? and assuming
that, to this order, the deviation of the measure p from
uniformity is not significant [du =~ d6d¢/(27)?*]. Using
In(1 + nP,) = nP, — (1/2)n*P; + O(n?), this gives

he = —37%(P2) + o(n?), 3)

which is negative for small enough n # 0. Here (P})
denotes the #-¢ average of P2, and the order n term is

absent by virtue of |, (2)77 P, de = 0. Figure 4 shows a plot
of hy versus n for P(6, ¢) = sing. Remarkably, Eq. (3)
(the straight line) describes the numerical data to better
than 8% even for 7 as large as 0.5.

To establish results (i) and (iv), that the attractor of the
map (1) is the whole #-¢ torus, we prove that the map
is topologically transitive: For every pair of open disks
A and B, there is a trajectory that starts in A and passes
through B. This property is known to imply that a dense
set of initial conditions yield trajectories that are dense in
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FIG. 4. Lyapunov exponent h, versus n°. For each 7, the
data plotted as open circles were computed from 10° iterations
of the map (1) with = 7(+/5 — 1) and P(6, ¢) = sine.
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the torus [10]. In particular, any attractor, having an open
basin of attraction, must contain a dense orbit, and, hence,
must be the entire torus.

We will show that, for every pair of horizontal
line segments L, = [60,,0, + 6] X {p,} and L, =
(05,0, + 8] X {p;}, there is a (finite) trajectory that
begins on the first line segment and ends on the second.
(Choosing L, to lie in A and L, to lie in B, this implies
topological transitivity.) Our strategy is to iterate L,
forward until the union of these iterates includes every
value of 6 at least once; the number of iterates needed is
finite and depends only on 6. By throwing away pieces of
some of these iterates, we form the graph ¢ = g,(0) of
a piecewise continuous function g,. Similarly, we form a
graph ¢ = g,(60) from pieces of backward iterates of L.
Finally, we show that some forward iterate of the graph
¢ = g,(0) must intersect the graph ¢ = g, (6).

The following is a formal definition of g,. For each 6,
let k(@) be the smallest non-negative integer for which
{{6 — k(@)w]mod 27} € [0,,0, + 6]. That is, k(@) is
the minimum number of backward iterates of Eq. (1a)
from 6 required to land in the interval [0,,6, + &].
Let g,(0) be the ¢ coordinate of the k(f)th iterate of
[0 — k(@)w, ¢,], and let K be the maximum value of
k(#). Then the graph ¢ = g,(6) has a finite number
d = K + 1 discontinuities, and each continuous piece of
this graph is a forward iterate of some piece of L,.

Now form the curve G, by taking the graph of g, and
adding vertical line segments at each point, where g, is dis-
continuous so as to make G, a continuous curve. Notice
that, for each n, the nth iterate of G, is also a continuous
curve that consists of the graph of a function with d dis-
continuities together with d vertical line segments.

Define g, and G similarly to g, and G,, but in terms
of the backward (not forward) iterates of the line segment
Lj. Notice that, because L, and L, have the same length
8, the function g, (similar to g,) has d discontinuities.

Our goal is to show that, for n sufficiently large, the nth
iterate of G, intersects G, for at least 2d + 1 different
values of #. Then since there are at most 2d values of
at which one of these two curves has a vertical segment,
there is at least one intersection between the nth iterate of
the graph of g, and the graph of g,, whence some point on
L, maps to some point on L, in at most 2K + n iterates.

Given a continuous curve C that, similar to G, and G,
is the graph of a function together with a finite number
of vertical line segments at discontinuities of the func-
tion, observe that its image under the map (1) is a curve
of the same type (in particular, since the map is one-to-
one, the lengths of the vertical segments remain between 0
and 277). Furthermore, because of the 4, term in the equa-
tion for ¢, 4, the image of C “wraps around” the torus
in the ¢ direction one more time than C does as one goes
around the torus one time in the § direction (cf. Fig. 1).

To formulate what we mean by “wrapping around,” de-
fine the winding number of C as follows. As @ increases
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from O to 1, count the number of times C crosses the circle
¢ = 0in the upward and downward directions. The differ-
ence between the number of upward and downward cross-
ings is the winding number of C.

Now if two curves C; and C, have different winding
numbers w; and w,, then C; and C, must intersect at least
|wi — ws| times. Because of the periodicity of P(6, ¢),
the winding number of a curve must increase by one each
time the map (1) is applied. Thus, for n sufficiently large,
the winding number of the nth iterate of G, differs from
the winding number of G, by at least 2d + 1. Hence, the
nth iterate of G, intersects G, for at least 2d + 1 different
values of #. This establishes claims (i) and (iv).

Notice that the argument above does not depend on the
specific form of P(6, ¢), only that it is continuous and
periodic and that 5 is sufficiently small (|p| < 75.) that
the map (1) is one-to-one. This independence of the results
from the specific form of P(6, ¢) implies that the results
are stable to system changes [our claim (v)] that preserve
a quasiperiodic driving component (1a).

We now show that stability to perturbations applies in
addition if the system is higher dimensional. In particular,
we discuss the case of a three-dimensional system with an
attracting invariant torus, and allow perturbations of the
toroidal surface. Consider the following map on R3:

0,+1 = (0, + w)mod 2, (4a)
Pn+1 = [Gn + o, + ’fIF(an, Pns rn)]m0d277’ (4b)
Tpt1 = Arp, + PQ(Hn, ©nsTn) . (4c)

Here 6 and ¢ are coordinates on a torus embedded in
R3, as in Fig. 1, and r is a coordinate in the direction
perpendicular to the torus, with » = O representing the
torus itself. The parameters w and 7, and the dependence
of P on 0 and ¢, have the same properties as for map
(1), and Q is continuously differentiable. When A and p
are small, Eqs. (4) map a neighborhood of the torus r = 0
into itself, and when p = 0 the torus r = 0 is invariant
and attracting. It then follows from classical results on
the perturbation of invariant manifolds [11] that, for A and
p sufficiently small, the map (4) has a smooth attracting
invariant manifold r = f(6, ¢) near the torus r = 0. On
this attractor, the map (4) reduces to a map of the form (1),
with P(8,¢) = P[0, ¢, f(0, ¢)]. Thus statements (i)—(v)
above apply also to the attractor of the three-dimensional
map (4).

In conclusion, our rigorous analysis of the map (1) pro-
vides firm evidence for the existence of strange nonchaotic
attractors as a generic phenomenon of quasiperiodically
forced systems.
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