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We study theoretically the polarization state of light in multiple scattering media in the limit of low
contrast in the refractive index. Linearly polarized photons are randomly rotated due to the Berry phase
associated with the scattering path. For circularly polarized light independent speckle patterns are found
for the two helical states. The statistics of the geometric phase is related to the writhe distribution of
semiflexible polymers such as DNA.
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Multiple light scattering techniques [1] allow the experi-
mentalist to probe deep into opaque, strongly scattering
samples and give information on both static and dynamic
correlations. The preferred way of interpreting these ex-
periments is via a field of scalar photons [2] which satisfy,
in the simplest analytic treatments, a diffusion or transport
equation. The phase of the wave associated with each path
is proportional to the optical path length sampled by each
photon. In this Letter, we show the importance of geomet-
ric phases in the evolution of photons in multiple scattering
which have as their origin the vector nature of light. Rather
surprisingly, while the basic propagation laws for light in
inhomogeneous media go back over 60 yr to the work of
Rytov [3,4], the full implication of his results has not yet
been exploited in the interpretation of multiple scattering
in condensed matter systems. In this Letter, we consider
the consequences of Rytov’s observations on the scattering
of circularly and linearly polarized light.

We first summarize our main results before giving a
more extended discussion: For circularly polarized light,
the photon helicity is a conserved quantum number in sys-
tems with weak inhomogeneities [3] within the eikonal
approximation. Each possible, multiple scattered, path
through a sample is highly tortuous and thus has associated
with it a writhe fi�2p [4,5]. A Berry phase, eifi, then
adds to the simple geometric optical path ci � q�i, calcu-
lated in a scalar theory, where q is a wave number, �i is the
optical path length, and ei � 61 is the photon helicity. In
a transmission geometry, this leads to two possible speckle
patterns for a given arrangement of scatters as a function
of the polarization state of the light. For linearly polarized
light the situation is more subtle: For each individual path
through the sample the geometric phase rotates the plane
of polarization [6]. However, the final experimental mea-
surement is a measure of intensity, summing over all paths
through the sample. This sum leads to a final polarization
state which is, in general, elliptical rather than linear. We
shall thus characterize the evolution of a linearly polarized
state as a probability distribution of polarization states on
the Poincaré sphere.

Technically we treat the problem of summing over pho-
ton paths via a mapping onto a semiflexible polymer, which
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treats multiple weak scattering of photons as an angular
diffusion process. The Berry phase is calculated from the
writhe [7] of the photon path using methods introduced
to study the statistical mechanics of DNA and other stiff
molecules. Our considerations also link up with remarks of
[8] which gave a local argument for the evolution of the po-
larization vector, in the context of backscattering, equiva-
lent to that of Berry’s.

Since multiple scattering techniques are very often used
to study the properties of colloidal systems, we start by ex-
plaining how some of the above ideas are applied to such
multicenter scattering systems, where the mapping onto a
torsionally rigid semiflexible polymer is particularly direct
and simple to understand. In the theory of scattering from
colloidal samples, one defines two characteristic distances.
The first, �, is the distance between two collisions between
a photon and a scattering center. The second, ��, measures
the distance over which a photon must travel in order to for-
get its initial direction of propagation. In a simple analogy
with stiff polymers, one can consider that the length � cor-
responds to a monomer size while �� is equivalent to the
persistence length of the polymer. In strongly scattering
media, with high contrast between inclusions and back-
ground these two lengths are comparable. However, by
using particles large compared with the wavelength of light
and with low contrast between the dielectric properties of
the two media, we can easily find samples for which ����
is of order 10. In recent experiments [9] in large droplet
helium aerosols, it has proven possible to increase ����
to over 200. Motivated by this last experimental system,
we present arguments as to the polarization statistics of
light scattered in a regime of intermediate sample thick-
ness, L, such that � ø L # �� in transmission geometry.
In such samples photons are scattered many times, but are
still largely propagating in the forward direction.

We now derive the mapping which allows us to transpose
results known from the statistical mechanics of stiff poly-
mers, including now the torsion as well as bending degrees
of freedom. Following [9], we shall model the medium
as an ensemble of randomly oriented interfaces neglect-
ing the spherical structure of the aerosol. This was shown
to give a good qualitative description of the scattering
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statistics. Consider the collision between a photon and
a single interface. The photon can be either reflected, and
thus deviated by a large angle, or refracted by a small angle
which can be calculated using geometric optics. The
probability of reflection, for a typical impact parameter, is
comparable toR � �n 2 1�2��n 1 1�2, where n is the re-
fractive index of the inclusions relative to that of the back-
ground medium. If we write e � �n 2 1� then we see
that the intensity of the direct beam decays over a length
which is at most �ref � ��e2 due to back scattering. A
background of photons scattered through large angles is
indeed observed experimentally, in addition to the main
forward beam [9]. We shall ignore these photons in what
follows.

Most of the beam is refracted at the interface. For typical
impact parameters the angle of deviation is comparable to
e. Since successive deviations of a photon are independent,
this implies that the direction of propagation of the photon
diffuses as it propagates into the medium with angular dif-
fusion coefficient D � e2��. Thus photons which are not
directly reflected at a surface also turn over a length compa-
rable to ��e2 which is thus our estimate of �� in this weakly
scattering limit. Note that in the case of spherical inclu-
sions some extra care is needed. The intensity of scatter-
ing decays at large angles as 1�u4 [10]. The mean squared
deviation has a logarithmic divergence and needs regular-
ization by a cutoff or a treatment using generalized, Levy
statistics since the central limit theorem does not apply.

Let us now consider the evolution of an incident linearly
polarized beam. The reflectivity of an interface is a func-
tion of the plane of polarization with respect to the surface;
the transmitted beam has a modified polarization state. In
the hypothetical case of perfect transmission the plane of
polarization of the refracted beam evolves by parallel trans-
port [8,11]. Because of the reflections, the transmitted
amplitudes of the two polarization components (defined
relative to the local surface orientation) are comparable to
1 2 O�e2�. This leads to a rotation of plane of polariza-
tion of the transmitted light by an angle 6O�e2� compared
to a parallel transported state. In the analogy with a stiff
polymer this corresponds to excitation of a torsional mode.
In stiff polymers, one can define two independent persis-
tence lengths for bend and torsional degrees of freedom, lp

and lt. These lengths are usually comparable. For the case
of multiple light scattering, we see that �p � �� � ��e2

whereas �t � ��e4. The “torsional” degree of freedom for
photons is frozen out at low dielectric contrast so that as
e ! 0 we find that lt ¿ lp, and parallel transport of the
transmitted component becomes exact.

The tangent to the propagation direction t�s� is a unit
vector living on a unit sphere. We now use the Berry
formula linking the area enclosed by the curve t�s� on this
sphere with the geometric phase to calculate the probability
distribution of phases associated with a samples in the
limit � ø L ø ��. When the sample is thin compared
with ��, the photons do not diffuse very far from their
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original propagation direction. We can thus calculate the
Berry phase by looking at the problem of diffusion on a
local, planar approximation to the sphere. The probability
distribution for the area of random loops on a plane is
known [11,12], implying the probability distribution for
the Berry phase: P �f� � 1�2DL cosh2�f�DL�. From
this expression we find the mean square phase as

�f2� � p2L2D2�12 . (1)

Because of the logarithmic divergence of the mean squared
scattering angle for spherical droplets, we interpret this re-
sult as the typical writhing angle being linear in the sample
thickness.

We proceed by studying the Jones vectors describing
the electric field of a coherent light source. Vertically
and horizontally polarized light is described by the vec-
tors jy � �1, 0� and jh � �0, 1�, respectively, whereas cir-
cular light corresponds to the vectors j6 � 1�

p
2 (1, 6i).

We are ultimately interested in the intensities of the vari-
ous polarization states of the transmitted beam which are
most easily visualized via the Poincaré sphere (Fig. 1).
The three axes correspond to a series of measurements
i1 � I0 2 I90, i2 � I45 2 I245, and i3 � I1 2 I2. Here,
I0,645,90 are the normalized intensities measured with a lin-
ear polarizer inclined at the subscripted angle, and I6 is the
intensity measured with circular analyzers.

As stated above for circularly polarized light, eifi can
simply be added to the phase ci so that the transmitted
Jones vector is given by

FIG. 1. The Poincaré sphere describing the polarization state
of the light. Linearly polarized states correspond to points along
the equator while the north and south poles, labeled j1 and
j2, correspond to circularly polarized light. Other states are
elliptically polarized. Multiple scattering of the initial state jy

describing linearly polarized light leads to a circularly symmet-
ric distribution of polarization states centered on jy in samples
where L�l� , 1.
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ei�ci6fi� 1
p

2

µ
1

6i

∂
(2)

for the incident state j6. We now sum over all pos-
sible paths to find the total scattered amplitude: The
sum of the individual circularly polarized states also gives
rise to circularly polarized light as the final state. When
L�l� � 2 the geometric phase introduces a relative phase
2fi between the right and the left states comparable to p.
We thus understand that the speckle pattern for the two
helical states is similar for very thin samples, whereas for
thicker samples we find two independent intensity distri-
butions for each circularly polarized state.

If we illuminate with linearly polarized light jy �
�1, 0�, each transmitted photon is described by its writhe
fi and the total phase ci so that the transmitted state is

eici

µ
cosfi

sinfi

∂
� eici

µ
1
fi

∂
, (3)

where we have specialized to samples with L��� , 1.
c is calculated from the statistics of longitudinal fluc-
tuation of a stiff polymer by writing the path length as
D �

R
ds

p
1 1 �dr��ds�2, with r� the deviation of the

path from a straight line. By expanding the square root
and studying the correlation function �D2� [13], one finds
that the fluctuations of path length, �i , for a sample of
thickness L are of order L2���, when L , ��. Thus ci

is very large, so that cimod�2p� is very nearly uniformly
distributed.

If we sum the amplitude Eq. (3) over a large number of
independent paths, corresponding to illuminating a large
area of the sample, we find a vector of the form

jf � Aeic0

µ
1

f0eic1

∂
. (4)

A relative phase between the two components of the vector
jf develops because of the random sign of fi. For small,
fixed f0, the vector jf describes a circle of radius 2f0
on the Poincaré sphere as c1 varies between 0 and 2p.
We note, in passing, that the full joint distribution function
of the writhe and path length, P �f, c�, is closely linked
with the force-torsion response curves measured in DNA
micromanipulation experiments [14]. The joint distribu-
tion could be explored in optical experiments by perform-
ing time resolved studies of the polarization state with fast
laser pulses.

Thus, A and Af0 are random variables with f0 �p
�f2� � L��� [Eq. (1)]. c1 is again uniformly dis-

tributed. For thin samples this random Jones vector is
distributed in a circular disk, centered on the initial vector
jy (Fig. 1). We see that the radius of the disk is directly
related to the typical writhe of paths through the sample.
The combination of a Berry phase combined with the
widely distributed optical path leads to a state of elliptical
polarization. We expect a complete loss of memory of
the initial polarization state in samples thicker than a few
times ��.
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In conclusion, we have reached an understanding as
to the evolution of the polarization states in multiple
scattering situations via a mapping onto a writhing poly-
mer. Our results are valid for coherent light sources; the
essential step was the combination of the amplitudes of the
Jones vectors. In scattering with incoherent sources it is
rather the Stokes parameters (i.e., the intensities, i1, i2, i3,
together with the total intensity i0) which should be
combined, presumably leading to multicomponent transfer
theories such as those discussed in [15]. The contrast
between multiple polarized scattering with coherent and
incoherent sources deserves closer study.

We reiterate that there is an important qualitative differ-
ence between the evolution of circular and linear polariza-
tion states. For the former, the helicity can be preserved
whereas the Berry phase associated with linearly polarized
light always leads to a state of random polarization. We
suggest that the natural setting for experimentally studying
polarization effects in multiple scattering media is in criti-
cal, opalescent samples or in solutions of extremely large
macromolecules, where the gradual density gradients allow
an exact formulation of the polarization statistics without
backscattering from interfaces.

In our rather crude description of the colloidal regime,
we have neglected all diffraction, limiting our treatment to
extremely large droplets. Many of the qualitative conclu-
sions should hold even for more moderate particle sizes
in Rayleigh-Gans scattering where diffraction is impor-
tant. Detailed simulations [16,17] have been performed
in this regime to study the decay of polarization in col-
loidal systems in transmission geometry with parameters
corresponding to polystyrene beads in water. It was indeed
observed numerically that the evolution of the polarization
state proceeds by the formation of a circular distribution
on the Poincaré sphere. The authors defined new lengths
���

circ and ���
plane, over which both circular and linear polar-

ization decay while noting that ���
circ . ���

plane. It would be
particularly interesting to perform simulations in the limit
of very low optical contrast in order to bring out some of
the scaling regimes which may exist in this limit.

In lower symmetry samples, rather different results are
to be expected. Light propagating in a uniform birefringent
material is described by two refractive indexes describing
a slow and a fast wave. In such a material circularly polar-
ized light can no longer propagate without modification. In
the presence of both multiple scattering and birefringence,
we expect that there is no stable state of polarization. It is
to be noted that many tissues, such as muscle, do have sig-
nificant birefringence. Empirically it has been found that
deep optical imaging in colloids is often best achieved with
circularly polarized light which we understand eliminates
polarization modifications due to writhe; in tissues linearly
polarized light is preferred [18].

Finally, we have not considered the nature of the
non-Gaussian statistics of the polarization states due to
the caustics and imaging presumably present in weak
253901-3
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scattering limits discussed in this Letter. A final question
that we leave open is the nature of two time correlation
functions of the polarization state: As scattering centers
move both the writhe of the photon paths and the phase
associated with each path vary. Does this variation contain
any interesting information on the dynamics of colloidal
systems?

We thank B. van Tiggelen for introducing us to [16] and
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methods.
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