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Complete Suppression of Spontaneous Decay of a Manifold of States by Infrequent Interruptions

Einat Frishman and Moshe Shapiro*
Chemical Physics Department, The Weizmann Institute of Science, Rehovot, 76100 Israel

(Received 28 February 2001; published 29 November 2001)

Complete suppression of spontaneous decay of a manifold of states is shown to be achievable in
a model system by a combination of coherent excitation of overlapping resonances and a judicious
infrequent application of microwave pulses.
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The possibility of suppressing spontaneous emission and
other decay processes has been a source of great interest
in recent years. Broadly speaking, one can identify three
main approaches: (1) the modification of the spectrum of
the (spontaneous photons) “bath,” (2) use of the “quan-
tum Zeno” effect, and (3) the coherent cancellation of the
dipole matrix elements to a common ground state.

The modification of the spontaneously emitted photon
bath can be performed in (micro) cavities [1–5] and in pho-
tonic band gap materials [6–10]. Whereas this is a highly
important field, our interest here is in the suppression of
the decay of an atom or a molecule in vacuum where the
photon bath is assumed intact. Such is the case in the
quantum Zeno effect [11–16] which is a method of sup-
pressing spontaneous decay in vacuum: One can suppress
the decay by continuously “resetting the clock” to zero
time where the decay is in its “Gaussian phase.” If one
performs this “clock resetting” often enough, one can sup-
press the decay altogether. However, it turns out that the
Gaussian phase of the decay is extremely short, occurring
at intervals which are roughly inversely proportional to the
frequency of the emitted photon. For visible-UV photons,
this means that interruptions must be executed at a rate of
�1015 Hz [16]. In addition to the practical difficulties of
such extremely frequent interruptions, the system is really
never freely evolving. Moreover, as shown recently [17],
such extremely frequent interruptions can often acceler-
ate, rather than suppress, the decay. Several level con-
figurations which enable the prolonging of the short-time
quadratic decay are discussed [18], but such schemes will
not work for an arbitrary set of final states.

The third class of methods is based on the coherent can-
cellation of a transition due to the interference between
two (or three) matrix elements leading to a common final
state. This cancellation can occur in a radiatively or non-
radiatively broadened line [19–21], or due to the inter-
ference between two transitions [22–24], which can also
be Autler-Townes [25] split by radiative interaction with a
third state. While these schemes work (on the conceptual
level) [26–30], they cannot work for an arbitrary number
of final states to which the system might decay. It is sim-
ply impossible to satisfy the destructive interference condi-
tions simultaneously for all the transitions. Thus, whereas
the “coherent cancellation” schemes may work for some
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atoms, they can never work for molecules where a host of
vibrational levels in the ground electronic state can serve
as the final states to which the system decays. In other
works, inhibition of autoionization in two electron atoms
by modification of a radial wave packet with an electric
field has been demonstrated theoretically [31] and experi-
mentally [32].

In this Letter we develop another method of suppressing
spontaneous decay. It is based on the interference within
a manifold of (two or more) decaying states. The great
advantage of the method is that it works in the vacuum and
for an arbitrary number of final states. It does so because it
exploits interferences within the decaying manifold which
are independent of the nature and number of the states to
which the system decays. The scheme is not confined to
spontaneous emission and can be applied to nonradiative
decay of a system coupled to an arbitrary bath. Moreover,
we achieve this goal by infrequent interruptions which
operate within the decaying manifold, determined by the
decay rate and not by the photon frequency. Thus, we can
completely suppress the spontaneous emission of a visible
photon of a set of excited electronic states of an atom or
a molecule by the application of a microwave pulse every
few nsecs.

Confining, for clarity, our attention to the suppression of
spontaneous emission, we consider a system composed of
a set of Na material levels ja� with zero photons coupled
to a set of Ng material levels jg� and a set of one-photon
modes in all directions k̂ and polarizations ê, j1k̂,ê�, de-
noted jointly as jE, b�. E is the total (matter 1 radiation)
energy, given as E � Eg 1 h̄vk , where vk � ck, and
b�� g, k̂, ê� is a joint index of the material state g and
the k̂ directed, ê polarized one-photon state.

The decay process starts at t0, at which time we
assume the system to be in a superposition of zero-photon
states, jC�t � t0�� �

P
a caja, 0�. Expanding the time-

evolution operator e2iH�t2t0�� h̄ in jE, b2�, the eigenstates
of the full (matter 1 radiation) Hamiltonian H, i.e.,
�E 2 H� jE, b2� � 0, we obtain at subsequent times that

jC�t�� �
X
a

ca

X
b

Z Ef

Ei

dE e2iE�t2t0�� h̄jE, b2�a�
a,b�E� ,

(1)
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where a�
a,b�E� � 	E, b2 ja, 0�. Following Fano [19]

we expand jE,b2� �
P

a aa,b�E� ja, 0� 1
P

b0

R
dE0 3

b
E,b
E 0,b 0 jE0, b0�. The amplitude of finding the system in the

zero-photon state and material state ja0� at the time t is
given as

ca 0�t� � 	a0, 0 jC�t�� �
X
a

caMa 0a�t 2 t0� , (2)

where ma 0a�E� �
P

b aa 0,b�E�a�
a,b�E� and Ma 0a�t� �REf

Ei
dE e2iEt� h̄ma0a�E�. Explicit expressions for the

amplitude of having emitted a photon in direction k̂ and
having made a transition to material state jg� can also
be written [19,33]. To obtain aa,b�E� we proceed in
the standard Feshbach partitioning technique [34–36] by
defining an operator Q �

P
a ja, 0� 	a, 0j, which projects

out the zero-photon states, and its orthogonal projector
P � I 2 Q. Assuming that ja� and jg� diagonalize the
material part of the Hamiltonian, we obtain [20,33,35,36]
that

aa,b�E� �
X
a 0

��E 2 ie 2 QGQ�21�aa 0V �a0 jE, b� ,

(3)

where QGQ � QHQ 1 QHP�E 2 ie 2 PHP�21PHQ;
explicitly, its elements are given by 	a, 0jQGQja0, 0� �
Eadaa 0 1 h̄Daa 0�E� 1 i

h̄
2 Gaa 0�E�, where

Gaa 0�E� �
2p

h̄

X
b

V �a jE, b�V �E, b ja0� , (4)

Daa 0�E� �
1

2p
PV

Z Ef

Ei

dE0 Gaa 0�E0���E 2 E0� , (5)

PV denotes the principal-value integral, and V�a jE, b� �
	a, 0jQHPjE, b�. We note that all the ja� levels involved
must have the same total angular momentum J, so that the
off-diagonal elements Gaa 0�E� do not vanish.

The above set of equations allows us to calculate in an
exact manner the amplitudes for the decay from a set of
overlapping resonances. An example for the jaa,b�E�j
probability amplitude for two overlapping resonances is
given in Fig. 1. (G is the average interaction strength G �

1
Na

P
a Gaa and DE is the level spacing in the zero-photon

manifold.) The interference leads to a dark state [20,22] at
a midpoint. We now exploit the interference between reso-
nances to choose 
ca�— the preparation coefficients of our
initial state such as to force the decay to proceed via qui-
escent period followed by “photon bursts.” Such steplike
decay is known to occur [33] for interfering overlapping
resonances.

In order to determine the preparation coefficients which
induce the widest quiescent periods we solve an opti-
mization problem in which our objective is to minimize
the decay during a given time interval t. Using Eq. (2)
we write P0�t j c�, the total population in the zero-photon
manifold at time t as P0�t j c� �

P
a 0 j	a0, 0 jC�t��j2 �

cyK�t�c, where c is the vector of ca coefficients, and
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FIG. 1. Overlapping resonances aab�E� for Na � 2 (solid:
a � 1, dashed: a � 2) and b � 
g � 1, k̂ � �u � 0, f � 0��
at three different h̄G�DE values. Clearly seen are the “dark
energies” at which the emission probability is zero resulting
from interference between neighboring resonances.

K�t� � My�t�M�t� with M�t� denoting the Ma0a�t� matrix.
Adding a Lagrange multiplier l to assure the normaliza-
tion

P
a jcaj

2 � 1, we now seek to maximize the quantity

P0,l�t j c� � cyK�t�c 2 lcyc . (6)

Differentiating with respect to c�
a0 and equating the result

to zero at the target time t, we obtain that the optimal
vector c�t� is a solution of the eigenvalue problem,

0 �
≠P0,l�t j c�t��

≠c
��t�
a 0

Ç
t�t

�
X
a

Ka 0a�t�c�t�
a 2 l�t�c�t�

a 0 .

(7)

The results obtained from this optimization procedure
are shown in Figs. 2a and 3a for Na � 2, 3 and for
h̄G�DE � 0.2. For spontaneous emission the Gaa 0�E�

0 32
0

1

t (nsec)

P 0(t
)

0 32
t (nsec)

τ = 1.1 nsec

τ = 3.2 nsec

FIG. 2. Left: Naturally evolving optimized superposition state
(solid lines) for Na � 2, DE � 0.5 GHz (2.5 3 1023 cm21),
1�G � 10.62 nsec. The triangle denotes the optimization time
t; and the natural decay of the two states comprising the zero
photon manifold (dashed lines). Right: Suppression of the de-
cay of the optimized superposition state due to the applica-
tion (at period t of 1.1 and 3.2 nsec) of microwave-p pulses
(solid lines). The triangles denote the times at which pulses are
applied.
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FIG. 3. The same as in Fig. 2, for Na � 3. At t � 3.2 nsec
spontaneous emission is completely suppressed.

matrix elements are given as

e2

3p´0h̄4c3

X

g:E.Eg�

Da,g ? D�
a0,g�E 2 Eg�3, (8)

with Da,g being the dipole matrix elements. Figures 2a
and 3a show the time dependence of P0�t jc�, the zero-
photon manifold population, corresponding to the optimal
choice of the preparation coefficients 
ca�. The optimiza-
tion time t � t is marked on the figure by a triangle. The
dashed lines denote the natural decay of each zero-photon
state ja0, 0�, i.e., when ca � da,a 0. We note that the ex-
perimental realization of the required superposition can be
achieved by photoabsorption of a shaped pulse [37,38].

The decay pattern is seen to proceed in steps: following
a quiescent period, the ensemble decays rapidly by releas-
ing a burst of photons. This phenomenon repeats itself
periodically, until the decay is complete. The quiescent
period, which is longer and flatter the more states are in-
volved (i.e., the larger is Na), is a result of a constructive
interference between the various (radiatively) broadened
overlapping line shapes aa,b�E�. It occurs exclusively in
the excited manifold and, due to the fact that Gaa 0�E� and
Daa 0�E� involve a general sum over final states, the inter-
ference holds for an arbitrary number of final (one-photon
and material) channels.

The photon bursts noted above arise when, during its
natural evolution, the ca coefficients describing the super-
position of overlapping resonances no longer assume the
specific relations which bring about the constructive inter-
ference which results in the quiescent periods. It would
therefore appear that one might be able to suppress the
bursts by applying, just before the onset of the bursts, (mi-
crowave) pulses which periodically reverse the time evolu-
tion of the ca coefficients. In this way the system would be
shuttling back and forth in time in the quiescent phase and
the spontaneous decay would be suppressed for all times.
In the Na � 2 case the pulses we seek are identical to the
p pulses used in the field of photon echoes [39].

In the following we present a detailed study and demon-
stration of this idea. Assuming that the p pulses are very
short compared to the 1�G average decay time, we can
safely neglect the decay during their application. As a
result, when the pulses are applied on resonance, the co-
efficients describing the superposition state in the two-
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state Q manifold evolve as �c1�t� � iVc2�t� and �c2�t� �
iV�c1�t�. Assuming that the duration of the pulse is dt,
we have that c1

a �t�, the ca�t� coefficients after the pulse,
are related to the ca�t� coefficients before the pulse as

c1
1 �t� � c1�t� cos�Vdt� 1 ic2�t� sin�Vdt� ,

c1
2 �t� � ic1�t� sin�Vdt� 1 c2�t� cos�Vdt� .

(9)

Based on the photon-echo experience, our first guess is to
choose V such that Vdt �

p

2 (a p pulse). In that case
we have that the pulse transfer matrix in the Q space is
given by the (unitary) transformation,

T �

µ
0 i
i 0

∂
.

Likewise, in the three-state case our first guess is to apply
a 3 3 3 transfer matrix of

T �

0
B@ 0 0 i

0 i 0
i 0 0

1
CA ,

which can be realized by a variety of two (microwave)
pulse configurations.

If one desires the decaying states to be coupled radia-
tively to the same ground state jE, b�, a two-photon p

pulse can be used to reverse the population between two
ja, 0� states. Such a two-photon p pulse can be realized
by a Raman process conducted with visible light or by a
two-photon microwave process.

We note that although the microwave pulses operate in
the Q manifold (of vacuum visible photon states), and due
to the vast energy mismatch cannot couple directly the Q
manifold to the P manifold, the microwave pulse can nev-
ertheless indirectly affect the one-photon P manifold. We
have calculated the effect of the microwave pulse on this
manifold by substituting the postpulse c1

a �t� coefficients
into the expression for C�t� [Eq. (2)].

In Figs. 2 and 3 we present a series of simulations of
the suppression of spontaneous emission by the above
scenario. We have considered spontaneous decay due to
the coupling [40] of a zero-photon manifold composed
of 2 or 3 material ja� states to a one-photon manifold
composed of all photon directions and two material
jg� states. We have assumed (highly allowed) dipole
matrix elements Da,g , corresponding to Einstein A
coefficients of �5 3 108 sec21. The resulting decay time
is 1�G � 10.62 nsec and the natural period defined by
the energy spacing is taken as h̄�DE � 0.2�G; therefore
picosecond pulses can be considered as instantaneous.
The required Rabi rates for 1 psec square pulses are V �

p

2dt � 1.6 THz (3.8 � 1025 a.u.). The optimized su-
perposition is given by c � �0.80, 20.44 2 0.41i� for
Fig. 2a and c � �20.36 1 0.34i, 0.78, 20.28 2 0.26i�
for Fig. 3a. In Figs. 2b and 3b we show the zero-photon
manifold population resulting from applying a train of
p pulses to the freely evolving superposition state of di-
mensionality Na � 2 and 3, respectively, whose steplike
decay is shown in Figs. 2a and 3a. Quite clearly, the
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decay is effectively suppressed. The suppression becomes
complete as the frequency of interruptions increases
(compare the 1.1 nsec period to the 3.2 nsec period in
Fig. 2 or the 3.2 nsec period to the 6.4 nsec period in
Fig. 3), or the dimensionality of the Q manifold increases
(compare Fig. 2b to Fig. 3b).

As an example to a molecular system on which this
scheme can work, consider molecules with congested spec-
tra where the widths emanating from spontaneous emission
and/or predissociation are in the order of magnitude of the
spacing between resonances. This is the case with the NaI
molecule [41], possessing a complex spectrum with over-
lapping resonances, due to interferences induced by curve
crossing processes.

An atomic system where our scheme can be most easily
realized experimentally is an atom with a ground state
and an excited electronic state possessing one resonance
split by a magnetic field. The coherences on the excited
states may be created by a pulse transferring population
initially on the ground state. An x-polarized pulse would
populate the two states M 1 1, M 2 1, and a z-polarized
pulse would populate the state M. The selection rules for
this system conform with the requirements imposed by our
suppression scheme.

An additional example makes use of the Autler-Townes
splitting effect [25]. A single resonance is split to a doublet
in the presence of a resonant strong cw field, coupling it
to a third state (which does not emit spontaneously itself).
The two resulting resonances are of the same symmetry,
and are suitable for our suppression scheme. The intensity
of the cw field is controlled such that the splitting is com-
parable with the decay widths.
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Germany.

*Author to whom correspondence should be addressed.
Email address: moshe.shapiro@weizmann.ac.il

[1] S. Haroche and D. Kleppner, Phys. Today 42, No. 1, 24
(1989).

[2] J. I. Cirac and L. L. Sanchez-Soto, Phys. Rev. A 44, 1948
(1991).

[3] A. Shalom, Phys. Rev. A 45, 443 (1992).
[4] W. Lange and H. Walther, Phys. Rev. A 48, 4551 (1993).
[5] G. S. Agarwal and S. DuttaGupta, Phys. Rev. A 57, 667

(1998).
253001-4
[6] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[7] S. John and T. Quang, Phys. Rev. A 50, 1764 (1994).
[8] S. Bay, P. Lambropoulos, and K. Molmer, Phys. Rev. A

55, 1485 (1997).
[9] T. Sondergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. E.

Barkou, IEEE J. Quantum Electron. 34, 2308 (1998).
[10] V. I. Yukalov, Eur. Phys. D 13, 83 (2001).
[11] B. Misra, J. Math. Phys. (N.Y.) 18, 756 (1977).
[12] G. J. Milburn, J. Opt. Soc. Am. B 5, 1317 (1988).
[13] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J.

Wineland, Phys. Rev. A 41, 2295 (1990).
[14] P. Knight, Nature (London) 344, 493 (1990).
[15] V. Frerichs and A. Schenzle, Phys. Rev. A 44, 1962 (1991).
[16] P. Facchi and S. Pascazio, Phys. Lett. A 241, 139 (1998).
[17] A. G. Kofman and G. Kurizki, Nature (London) 405, 546

(2000).
[18] M. B. Plenio, P. L. Knight, and R. C. Thompson, Opt. Com-

mun. 123, 278 (1996).
[19] U. Fano, Phys. Rev. 124, 1866 (1961).
[20] M. Shapiro, J. Chem. Phys. 56, 2582 (1972).
[21] H. G. Dehmelt, Bull. Am. Phys. Soc. 20, 60 (1975).
[22] S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
[23] A. Imamoglu, Phys. Rev. A 40, 2835 (1989).
[24] G. C. Hegerfeldt and M. B. Plenio, Phys. Rev. A 46, 373

(1992).
[25] S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).
[26] M. O. Scully, S. Y. Zhu, and A. Gavrielides, Phys. Rev.

Lett. 62, 2813 (1989).
[27] P. Zhou and S. Swain, Phys. Rev. A 56, 3011 (1997).
[28] G. S. Agarwal, Phys. Rev. A 55, 2457 (1997).
[29] P. R. Berman, Phys. Rev. A 58, 4886 (1998).
[30] Z. Ficek and T. Rudolph, Phys. Rev. A 60, R4245 (1999).
[31] L. G. Hanson and P. Lambropoulos, Phys. Rev. Lett. 74,

5009 (1995).
[32] X. Chen and J. A. Yeazell, Phys. Rev. Lett. 81, 5772 (1998).
[33] M. Shapiro, J. Phys. Chem. A 102, 9570 (1998).
[34] K. C. Friedrichs, Commun. Pure Appl. Math. 1, 361 (1948).
[35] H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962); 43, 410

(1967).
[36] R. D. Levine, Quantum Mechanics of Molecular Rate Pro-

cesses (Clarendon Press, Oxford, U.K., 1969).
[37] T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and

G. Gerber, Appl. Phys. B 65, 779 (1997).
[38] J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, Science 287,

463 (2000).
[39] N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev.

Lett. 13, 567 (1964).
[40] R. Loudon, The Quantum Theory of Light (Clarendon

Press, Oxford, U.K., 1983), 2nd ed., pp. 52 and 174–179.
[41] M. Shapiro, J. Phys. Chem. 97, 7396 (1993).
253001-4


