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Tests for Gaussianity of the MAXIMA-1 Cosmic Microwave Background Map
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Gaussianity of the cosmological perturbations is one of the key predictions of standard inflation, but
it is violated by other models of structure formation such as cosmic defects. We present the first test
of the Gaussianity of the cosmic microwave background (CMB) on subdegree angular scales, where
deviations from Gaussianity are most likely to occur. We apply the methods of moments, cumulants,
the Kolmogorov test, the x2 test, and Minkowski functionals in eigen, real, Wiener-filtered, and signal-
whitened spaces, to the MAXIMA-1 CMB anisotropy data. We find that the data, which probe angular
scales between 10 arcmin and 5 deg, are consistent with Gaussianity. These results show consistency
with the standard inflation and place constraints on the existence of cosmic defects.
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A. Introduction.—The anisotropy in the cosmic mi-
crowave background (CMB) is arguably the cleanest cos-
mic signal that preserves the intrinsic statistical properties
of cosmological perturbations, the energy fluctuations
associated with structure formation in the universe [1].
The recent CMB observations [2–4] have unambiguously
detected periodic peaks in the CMB power spectrum.
The narrowness of the first peak has favored inflation [5]
as the dominant mechanism for structure formation in
the Universe [6], as opposed to other candidates such as
cosmic defects [7]. Another key prediction of standard
inflation is that the distribution of cosmic perturbations
is Gaussian, while other cosmological models such as
isocurvature inflation (e.g., [8]) and cosmic defects (e.g.,
[9]) predict otherwise. Thus tests for the Gaussianity of
CMB anisotropy data can discriminate between cosmo-
logical models. In addition, a Gaussian distribution is an
important ingredient in the estimation algorithm of CMB
power spectra [10–12], which has been used to produce
the recent MAXIMA-1 [2], BOOMERANG [3], and
DASI [4] results. Adding the fact that these power spectra
were further used to estimate a number of cosmological
parameters to unprecedented accuracy [13–15], it is
important to verify the Gaussian distribution of the CMB.

A Gaussian distribution is a consequence of a random
process. Its defining property is that the higher-order
(greater than two) reduced moments vanish, indicating that
the mean and the two-point correlation function, or equiva-
lently the power spectrum, contain all the statistical infor-
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mation in a Gaussian distribution. However, in a general
map of CMB anisotropy, whose mean is zero by defini-
tion, the power spectrum carries only a small fraction of
the total information. Therefore, while investigating the
Gaussianity of the CMB data, this paper also examines
some important remaining information (in addition to the
power spectrum) which was discarded in all recently pub-
lished CMB results.

Tests for the Gaussianity of CMB data have been car-
ried out by numerous authors, mainly using data from the
Differential Microwave Radiometer (DMR) on the Cosmic
Background Explorer [16]. Several statistics were used
including moments, cumulants, Minkowski functionals
(which include genus, e.g., [17]), the three-point corre-
lation function (e.g., [18]), bispectrum (e.g., [19,20]),
wavelet transform (e.g., [21]), etc. All these tests showed
that the data were consistent with Gaussianity, except
for two results [20,21] that may have noncosmological
origins [22].

In addition to the limitations from foreground contami-
nation and instrumental noise, the 7± angular resolution of
the DMR data is not ideal for tests of Gaussianity. Angular
resolution is an issue because the size of the causal hori-
zon at last scattering is about 1±. Thus, due to causality,
there are many uncorrelated perturbations in a sky patch
of superdegree size. As a result, the central limit theo-
rem guarantees that on superdegree scales the anisotropy
at last scattering will tend to be Gaussian, and may further
obscure any non-Gaussianity that may be contributed from
© 2001 The American Physical Society 251303-1
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cosmic defects after last scattering. Therefore a CMB map
with subdegree resolution can provide much more power-
ful tests for Gaussianity. Park et al. [23] recently used a
genus test on the QMAP and Saskatoon data, which have a
resolution of order of 1±, to show that they were consistent
with Gaussianity. In this paper we report results from a se-
ries of Gaussianity tests on the MAXIMA-1 CMB map [2],
which provides anisotropy information on angular scales
between 10 arcmin and 5 deg. To optimize both the reso-
lution and the signal-to-noise ratio for these tests, we use a
map with 5972 square pixels of 80 each [24]. Using these
high-quality data we probe for the first time the Gaussian-
ity of CMB anisotropy on subdegree scales.

B. Karhunen-Loève transform.—We first consider the
Karhunen-Loève (K-L) transform, sometimes called prin-
cipal component analysis or the signal-to-noise eigenmode
transformation (e.g., [11,25]). This transform enables us
not only to transform the observed CMB map into un-
correlated eigenmodes of known signal-to-noise ratios but
further to implement Gaussianity tests on the uncorrelated
modes. For the CMB, it is standard to model the map
data vector d as a linear sum of uncorrelated signal s
and noise n, with the correlation matrix C � �ddT� �
S 1 N, where S � �ssT� and N � �nnT�. In the noise-
whitened space, d�W� � N21�2d, all the eigenvalues of
the noise matrix, N21�2NN21�2 � I, are simply unity.
Thus the eigenvalues eS�W� of the noise-whitened signal
matrix N21�2SN21�2 represent the square of signal-to-
noise ratios of each eigenmode. The coefficients b�W� of
the noise-whitened eigenmodes in a data set can be ob-
tained by transforming d�W� to the basis which diagonal-
izes N21�2CN21�2. These coefficients are normally called
the K-L coefficients.

We compute S using the CMB power spectrum of the
cosmological model best estimated from the MAXIMA-1
data [13] (Vb � 0.105, Vc � 0.595, VL � 0.3, and h �
0.53) and including the effects introduced by the beam
shape and the pixelization of the map [26]. The matrix
N is estimated from the temporal data [24]. The result-
ing eigenvalues in the noise-whitened space are shown in
Fig. 1, sorted in descending order. The dot-dashed line in-
dicates that only the first 639 modes have signal-to-noise
ratios �eS�W��1�2 $ 1. This number is well below our pixel
number 5972. It is determined by the signal and noise lev-
els and the observing resolution (beam) of a data set, but
is independent of the pixel number of the map when the
pixel size is not larger than the observing resolution.

A common technique to suppress the noise level in
the map is Wiener filtering, dWF � SC21d. This is
equivalent to weighting the eigenmodes with the ratios
eS�W���eS�W� 1 1� (see Fig. 1). The sum of these ratios
for all the eigenmodes is 837, again well below the total
number 5972 of the eigenmodes. We shall employ this
technique in section D.

The K-L transform can also be used to test for Gaus-
sianity. If the underlying map is Gaussian, then the eigen-
value-normalized K-L coefficients a�W� � b�W���eS�W� 1
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FIG. 1. Noise-whitened eigenvalues of the MAXIMA-1 CMB
data (top) and the Wiener filter (bottom).

1�1�2 should be a set of Gaussian variables with mean zero
and variance one. We compute the a�W� of our data and
then its one-point probability distribution functions (PDF)
p�n�, where n is the number of standard deviations from
the mean, for both the entire 5972 and the first 639 modes
(i.e., those with signal dominating over noise). Both cases
easily pass the x2 and the Kolmogorov tests for Gaussian-
ity at 95% confidence.

In addition to the above tests, we also use Monte Carlo
(MC) simulation to build a Gaussian reference frame for
the frequentist approach, testing the null hypothesis of
Gaussianity for the inflationary model that best fits the
data. We generate 100 000 Gaussian realizations of the
MAXIMA-1 CMB map, each of which is obtained by si-
multaneously simulating the CMB signal and the noise
dMC � C1�2g, where g is a vector of Gaussian variables
of mean zero and variance one. As a first application, we
use these MC maps to find the probability distribution of
p�n� at each n for the entire 5972 and the first 639 a�W�.
Figure 2 shows that in both cases the real data lie well
within the 95% confidence regions of Gaussianity (here-
after, CRG). We also compute the moments and cumu-
lants of the first 639 a�W� up to tenth order, and they are all
well within the 99% CRG. All these results support the
conclusions not only that our map is consistent with Gaus-
sianity but also that our estimations of noise and CMB
power spectrum (giving N and S, respectively) are consis-
tent with the data so as to provide the proper eigenmodes
for the K-L transform.

C. Minkowski functionals.—The concept of Minkowski
functionals is based on integral geometry. According to
Hadwiger’s theorem, b 1 1 Minkowski functionals are
sufficient to measure the morphology of a b-dimensional
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FIG. 2. PDF p�n� of the entire 5972 (a) and the first
(b) a�W�of the MAXIMA-1 data (solid line), the Gaussian
expectation (dashed line), and its 95% CRG (shaded region).
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pattern. In the case of CMB we have b � 2 and thus
need only three Minkowski functionals. We define the
excursion set Q in a given CMB field as the region in
which the CMB amplitude d is larger than a threshold:
Q � Q�n� � 	d j �d 2 m��s . n
, where m � �d� and
s2 � �d2� 2 m2. Then the surface densities yi�n� �
Vi�Q��A of Minkowski functionals Vi�Q� for a CMB patch
of angular area A can be defined as

y0 �
1
A

Z
Q

dA, y1 �
1

4A

Z
≠Q

dl,

y2 �
1

2p
A

Z
≠Q

k dl , (1)

where ≠Q is the boundary of the region Q, dA and dl
are the differential elements of Q and ≠Q, respectively,
and k is the geodesic curvature of dl. These Minkowski
functionals have different morphological meanings:
V0 is the total area of Q, V1 is the total length of its
boundary, and V2 is the number of isolated regions (hot
spots) in Q minus the number of holes (cold spots).
For an isotropic Gaussian field these functionals are
characterized only by the variance s2 of the field and
the variance of its gradient t � �j=dj2��2, i.e., y0�G� �
erfc�n�

p
2 ��2, y1�G� � t1�2 exp�2n2�2��8s, and

y2�G� � tn exp�2n2�2���2p�3�2s2. We also note that
the commonly used one-point PDF p�n� and genus
g, or the “Euler-Poincaré characteristics,” are simply
related to the Minkowski functionals. For the two-
dimensional CMB, we have p�n� � 2≠V0�A≠n and
g � V2 1 V0�2p.

We compute the y0�n�, y1�n�, and y2�n� for both the
entire map and the central 37% [27] (2209 pixels, covering
about 6.3± 3 6.3±) expected to have the lowest noise. We
use pixel sizes of 80, 160, and 240, the last two obtained by
averaging the neighboring pixels of the original map. The
results of all six cases lie within the 95% CRG obtained
from the MC simulation described earlier. Figure 3 shows
the results of the two cases with 80 pixels. We note that
while the means of the MC simulation (dashed lines) are
close to the analytical isotropic Gaussian forms (dotted
lines) in 3(b1)–3(b3), they deviate significantly from each
other in 3(a1)–3(a3). This is due to the higher noise level
near the edge of the map, contributing as an anisotropic
component in the map (the rms noises per pixel in the
full map and in the central part are about 162 and 57 mK,
respectively).

We also note that some results (solid lines) appear to
have systematic departure from the Gaussian expectations
ȳ

MC
i �n� (dashed lines). For example, 3(b3) shows that the

number of cold spots is less than the Gaussian expecta-
tion. To determine whether these discrepancies are really
systematic, we first define

Ii�n� �
Z n

2`

yi�n0� 2 ȳ
MC
i �n0�

s
MC
i �n0�

dn0, i � 0, 1, 2 ,

(2)
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FIG. 3. Minkowski functionals (solid lines) of the entire
MAXIMA-1 map (a) and the central part (b). The Gaussian
expectation obtained from the MC simulation (dashed lines), its
95% CRG (shaded regions), and the analytic Gaussian forms
(dotted lines).

where s
MC
i �n0� is the standard deviation of yi�n0� esti-

mated from the MC simulation. Applying this to both the
real data and the MC simulation, we obtain, respectively,
the Îi�n� and its Gaussian-expected PDF p�Ii�n��. The
results from all six cases lie well within the 95% CRG.
Thus we know that the apparent systematic deviations from
Gaussianity in yi are statistically insignificant when mea-
sured by Ii�n�.

D. Wiener filtering and signal-whitening tech-
niques.—To increase the statistical significance of
the CMB signal in the map, we now consider two fil-
tering methods. One is the Wiener filtering addressed
earlier, and the other is a new signal-whitening tech-
nique, dW � S1�2C21d [28], which not only removes the
anisotropy on scales where the noise dominates (as in
Wiener filtering) but also equalizes the anisotropy ampli-
tudes on scales where the CMB signal dominates. The
signal-whitening procedure will reveal in dW the features

FIG. 4. The Wiener-filtered (left) and the signal-whitened
(right) MAXIMA-1 map, with ranges of fluctuations of
�23.1, 3.4�s and �23.7, 4.3�s, respectively.
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FIG. 5. Similar to Fig. 3, but for the Wiener-filtered (a) and
the signal-whitened (b) MAXIMA-1 central map.

of the non-Gaussian components whose contribution in
the CMB anisotropy dominates the Gaussian one within
at least a range of the accessible scales [28]. We apply
these filtering methods to both the real map (Fig. 4) and
the MC simulation, and then compute their Minkowski
functionals. We find that for both the entire map and the
central part (as previously) the yi�n� and Ii�n� of the
filtered maps are within the 95% CRG. Figure 5 shows
results of the filtered central maps. We also verify for
both of the filtered maps that none of the pixels with
amplitude outside the 62s range coincides with the
locations of any known radio or infrared Astronomy
Satellite point sources [29]. This was expected from the
extrapolation of the amplitudes of known point sources to
the frequency bands and resolution of MAXIMA-1. Thus
we have no statistically significant detection of localized
non-Gaussianity in our data.

E. Conclusion.—We employ moments, cumulants, the
Kolmogorov test, the x2 test, and Minkowski functionals
in eigen, real, Wiener-filtered, and signal-whitened spaces
to implement a total of 82 (not independent) hypothesis
tests for Gaussianity (22 in section B, 36 in section C,
24 in section D). We show that the MAXIMA-1 CMB
map is consistent with Gaussianity on angular scales be-
tween 10 arcmin and 5 deg. This gives confidence in the
Gaussianity assumption used in the estimation of the CMB
power spectrum [2], and consequently in the estimation of
cosmological parameters [13,15]. The results also favor
standard inflation against cosmic defects as the dominant
mechanism for structure formation in the universe, as simi-
larly concluded in the study of the recently observed CMB
power spectrum. Nevertheless, the existence of cosmic
defects at low energy level is still possible [6,28]. Fur-
ther theoretical study of defect models will be needed to
constrain this possibility in detail, and more sophisticated
methods of Gaussianity tests or data with even higher reso-
lution and signal-to-noise ratio may also be required.
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