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Noise-induced dynamics of a prototypical bistable system with delayed feedback is studied theoreti-
cally and numerically. For small noise and magnitude of the feedback, the problem is reduced to the
analysis of the two-state model with transition rates depending on the earlier state of the system. Ana-
lytical solutions for the autocorrelation function and the power spectrum have been found. The power
spectrum has a peak at the frequency corresponding to the inverse delay time, whose amplitude has a
maximum at a certain noise level, thus demonstrating coherence resonance. The linear response to the
external periodic force also has maxima at the frequencies corresponding to the inverse delay time and
its harmonics.
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The effects of random noise on bistable systems and the
related phenomenon of stochastic resonance have received
great attention in the last decade. As a result, a compre-
hensive theory and a whole range of experimental observa-
tions have emerged (for a recent review see [1]). In many
physical as well as biological systems, the time-delayed
feedback plays a significant role in the dynamics. These
systems in the absence of noise have been thoroughly in-
vestigated using the theory of delay-differential equations
[2]. The theory of stochastic delay-differential equations,
in which effects of noise and time delay are combined, re-
mains much less studied. Meanwhile, it appears that the
combination of these features is ubiquitous in nature. Ex-
amples include biophysiological dynamics [3] and laser
dynamics in optical cavities [4]. It is also believed that
the combined effects of noise, bistability, and delay play
an important role in gene regulatory networks [5].

The delayed stochastic bistable systems have been a
subject of several recent papers [6–8]. In Ref. [6], a
systematic statistical description of a certain class of sto-
chastic delay-differential equations was developed in the
limit of small time delay. More interesting, however, is
the case of a large time delay which is comparable with
the mean Kramers transition time determined by the noise
intensity and the potential barrier height. In this case, res-
onant phenomena may occur which would lead to spon-
taneous oscillations of the system with a certain preferred
frequency. In Refs. [7], Ohira and co-workers studied the
related phenomenon of delayed random walks. In that
model, the hopping probability depends on the position
of the particle a given number of hops in the past. In cer-
tain cases, the particle diffusion is limited, and it exhibits
quasiregular oscillations near the origin. In Ref. [8], Ohira
and Sato studied a discrete-time two-state system in which
the occupancy probabilities of the two states depended on
the state of the system some N time steps before. While
that model also showed some interesting resonant features,
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it appears to us somewhat unrealistic, since the states of
the system at two consecutive iterations are completely un-
coupled, and its dynamics is, in fact, identical to that of a
superposition of N independent one-dimensional maps af-
fected by random noise. In most practically relevant cases,
however, the state of the system should be affected in the
first place by its immediate past, with additional correction
arising from the time-delayed feedback.

In this Letter we study the effects of the thermal activa-
tion on bistable systems with additional time-delayed feed-
back. Our prototypical model is the overdamped particle
motion in the double-well quartic potential U���x�t�, x�t 2

T ����, described by the Langevin equation

dx�t�
dt

� 2
≠U���x�t�,x�t 2 T ����

≠x�t�
1

p
2D j�t�

� x�t� 2 x3�t� 1 ex�t 2 T� 1
p

2D j�t� . (1)

Here T is the delay and e is the strength of the feed-
back, and j�t� is a Gaussian white noise with �j� � 0
and �j�t�j�t 0�� � d�t 2 t0�. At small D and e, the particle
spends most of the time near potential minima x � 61,
only occasionally jumping from one to another.

In our analytic description we neglect the small in-
trawell fluctuations and approximate (1) with a two-state
(dichotomic) system, in which the dynamical variable s�t�
takes two values s � 61 corresponding to x . 0 and
x , 0, respectively. This reduction has been successfully
used in studies of the stochastic resonance [9]. The dynam-
ics of s is determined by the switching rates, i.e., by the
probabilities to switch s ! 2s. Because of the delay, we
have two switching rates depending on the state s�t 2 T�:
p1 if the state at time t 2 T is the same as at time t, and
p2 otherwise. Thus, the switching rate can be written as

p�t� �
p1 1 p2

2
1

p1 2 p2

2
s�t�s�t 2 T � . (2)
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This rate dependence on the state at time t 2 T makes this
process essentially non-Markovian.

A quantitative relation between rate process (2) and
original model (1) can be easily established for small D
and e by virtue of the Kramers formula for the escape rate
[10] rK � �2p�21

p
U 00�xm�U 00�x0� exp�2DU�D�, where

xm and x0 are the positions of the minimum and the maxi-
mum of the potential, respectively, and DU is the potential
barrier to cross over. For small D, the switching rates are
small compared to the intrawell equilibration rate, and the
probability density distribution is close to a narrow Gauss-
ian distribution centered around xm, and so the adiabatic
approximation applies. For small e, jxmj � 1 6 e�2 de-
pending on the sign of x�t�x�t 2 T�, x0 � 0, and in the
first order in e we obtain

p1,2 �

p
2 6 3e

2p
exp

∑
2

1 6 4e

4D

∏
. (3)

Without loss of generality let us assume that the system
is at state s � 1 at time 0. We define n6�t� to be the
probability of attaining value 61 at time t. The master
equations for n6�t� is written in a usual way,

�n1�t� � 2W#�t�n1�t� 1 W"�t�n2�t� ,

�n2�t� � 2W"�t�n2�t� 1 W#�t�n1�t� ,
(4)

where W"�t� dt is the probability of transition from 21 to
11 within time interval �t, t 1 dt� and vice versa. In our
stochastic model with time-delayed feedback,

W#�t� � p1n1�t 2 T � 1 p2n2�t 2 T � ,

W"�t� � p2n1�t 2 T � 1 p1n2�t 2 T � .
(5)

Substituting (5) in (4) and making use of the normalization
condition n2�t� 1 n1�t� � 1, we obtain

�n1�t� � p2n2�t� 2 p1n1�t� 2 �p2 2 p1�n2�t 2 T� ,

(6)

�n2�t� � 2p1n2�t� 1 p2n1�t� 2 �p2 2 p1�n1�t 2 T� .

(7)

The correlation function C�t� is determined as

C�t� � �s�t�s�0�� � �s�t�� � n1�t� 2 n2�t� (8)

[we recall that the initial state is s�0� � 1]. Thus, replacing
t with t and subtracting (7) from (6), we obtain

dC�t�
dt

� 2�p1 1 p2�C�t� 1 �p2 2 p1�C�t 2 T� .

(9)

This equation should be complemented with the sym-
metry C�2t� � C�t� and the normalization C�0� � 1
conditions.

The solution of this linear equation on the in-
terval �0, T � can be found using ansatz C�t� �
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A exp�2lt� 1 B expl�t 2 T �. Plugging this ansatz
in Eq. (9) yields l � 2

p
p1p2, B � A�pp2 2

p
p1��

�pp2 1
p

p1� exp�22
p

p1p2 T �. The constant A is found
from the condition C�0� � 1, and we obtain

C�t� �
�pp1 1

p
p2�e2lt 1 �pp2 2

p
p1�el�t2T�

p
p1 1

p
p2 1 �pp2 2

p
p1�e2lT .

(10)

Using (9) and (10), one can easily calculate C�t� at all
t . T ,

C�nT 1 t0� � e2� p11p2�t0

C�nT� 1 �p2 2 p1�

3
Z t 0

0
C����n 2 1�T 1 t���e�p11p2� �t2t 0� dt ,

(11)

where n � 1, 2, . . . , and 0 , t0 , T .
We plot the correlation function (10) and (11) as a func-

tion of normalized time t�T and dimensionless parameters
p1,2T in Fig. 1. Its structure differs depending on whether
the feedback is positive [p2 . p1, which corresponds to
a positive e in (1)] or negative (p2 , p1, e , 0). For
positive feedback the correlation function is positive, and
has maxima at t 	 nT . For negative feedback the peaks
at t 	 nT have alternating signs. It is interesting to note
that the peaks of the correlation function are always de-
layed with respect to nT . For lT ¿ 1, the time interval
corresponding to the first peak is

t1 � T 1 �
p

p2 2
p

p1�22 ln
�pp1 1

p
p2�2

2�p1 1 p2�
. (12)

From the correlation function we can also determine the
power spectrum S�v� �

R`

2` C�t� cos�vt� dt. It is con-
venient to derive the expression for S directly from Eq. (9).
Denoting L�v� �

R`
0 C�t� exp�ivt� dt and substituting

here (9) we obtain

2C�0� 2 ivL � 2 �p1 1 p2�L

1 �p2 2 p1�eivT �L 2 I�v�� , (13)

where
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FIG. 1. The autocorrelation function in the two-state model as
a function of the time lag t and the feedback strength p2 2 p1,
for �p1 1 p2�T � 10.
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I�v� �
Z T

0
C�t�e2ivt dt

�
�pp1 1

p
p2� �1 2 e�2iv2l�T� �iv 1 l�21 1 �pp2 2

p
p1� �e2ivT 2 e2lT � �iv 2 l�21

p
p1 1

p
p2 1 �pp2 2

p
p1�e2lT .
Using C�0� � 1 and S�v� � 2 ReL�v�, we obtain

S�v� � 2 Re
1 1 �p2 2 p1�eivTI�v�

p1 1 p2 2 �p2 2 p1�eivT 2 iv
. (14)

We compare this analytic result with numerical simu-
lations of the bistable oscillator (1) in Fig. 2 and find a
very good agreement between theory and simulations. It
can be further improved if one takes into account the ne-
glected intrawell fluctuations which give rise to an addi-
tional Lorentzian contribution to the power spectrum with
the width corresponding to the frequency of oscillations in
one potential well, and the amplitude proportional to noise
intensity D (see, e.g., [1]).

In Fig. 3 we show the dependence of the power spec-
trum on the noise intensity D, while the feedback pa-
rameter e is kept constant [the switching rates p1,2 are
calculated according to (3)]. The peak at the main fre-
quency v 	 2p�T has a maximum at a certain noise
level (for negative feedback the picture is similar, with
the maximum near v 	 p�T). This is a characteristic fea-
ture of the coherence resonance [11]: the coherence in the
noise-driven system attains maximum at a “resonant” noise
temperature. In the present case the underlying physi-
cal mechanism is the resonance between the Kramers rate
and the delay. If the Kramers rate is small (for small noise
intensity), a characteristic interval between the switches is
larger than the delay time, and the latter is not displayed
in the spectrum because the process is a purely Poissonian
one (with a renormalized one due to the feedback switch-
ing rate). For an intermediate Kramers rate the switchings
are highly influenced by the feedback, with a preferable pe-
riodicity with the delay time T being manifested as a peak
in the spectrum. For large noise intensity the effect of the
feedback decreases again, because the relative magnitude
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FIG. 2. Comparison of the power spectrum in Eq. (1) for D �
0.1, T � 250, e � 60.05 (solid line) with theory (14) (dashed
line). Note that for positive and negative e the main peaks are
near 2p�T and p�T , respectively, in accordance with Fig. 1.
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of the delayed feedback �p2 2 p1���p1 1 p2� is propor-
tional to D21. In particular, for the parameters of Fig. 3,
the maximum of the main peak is achieved at vmax 	
0.024, D 	 0.0537. The Kramers time without feedback,
according to (3), is TK 	 467. For negative feedback
e � 20.1 we obtain vmax 	 0.0116, D 	 0.0444, and
TK 	 1233.

Let us discuss now the response of the time-delay sto-
chastic system to a periodic external force. Similar to
Ref. [9], we assume that the transition rates (5) are modu-
lated with a frequency V according to the Arrhenius rate
law,

W#�t� � �p1n1�t 2 T� 1 p2n2�t 2 T��eg�t�,

W"�t� � �p2n1�t 2 T� 1 p1n2�t 2 T��e2g�t�,

where g�t� � mD21 cos�Vt 1 f�. The equation for the
quantity s�t� � n1�t� 2 n2�t� (which now is not the au-
tocorrelation function) now reads

ds

dt
� 2 �p1 1 p2� �n1eg�t� 2 n2e2g�t��

1 �p2 2 p1� �n1eg�t� 1 n2e2g�t��s�t 2 T� .

In the linear approximation m ø 1 this reduces to

ds

dt
� 2 �p1 1 p2� �s 1 g�t��

1 �p2 2 p1�s�t 2 T � �1 1 C�t�g�t�� .

Now writing s � s0 1 mD21s1 where s0 is the solution
(10) and (11), we obtain for the first-order correction s1

ds1

dt
� 2 �p1 1 p2�s1 1 �p2 2 p1�s1�t 2 T�

1 ��p2 2 p1�s0�t�s0�t 2 T � 2 �p1 1 p2��

3 cos�Vt 1 f� . (15)

We are interested in the response at the frequency V

for t ! `, because only this part contributes to the
delta peak in the spectrum at this frequency. For t ! `,
s0�t� ! 0, so we can neglect the corresponding term
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FIG. 3. Power spectrum in the delay system (1) calculated in
the two-state approximation for T � 250 and e � 0.1.
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�p2 2 p1�s0�t�s0�t 2 T� in (15) and write the solution
as

s1�t� � Re
�p1 1 p2�eiVt1f

�p2 2 p1�e2iVT 2 iV 2 �p1 1 p2�
.

This is exactly the periodic component at frequency V in
the process s�t�, and the linear response h is

h �
1

2D2

�p1 1 p2�2

j�p2 2 p1�e2iVT 2 iV 2 �p1 1 p2�j2
.

(16)

In the absence of delayed feedback, when p1 � p2 � rK ,
this expression coincides with that of [9] for the stochastic
resonance in the two-state model. With the feedback, the
response demonstrates a resonancelike structure in depen-
dence on the driving frequency (contrary to the classical
stochastic resonance); see Fig. 4.

In conclusion, we have developed a theory of a
prototypical noise-driven bistable system with delayed
feedback. In general, such problems are very difficult
because of the non-Markovian nature of the dynamics.
However, for small noise and small magnitude of the
feedback, the problem can be simplified by reduction to
the two-state model with certain transition rates which
depend on the earlier state of the system. Using this
approximation, we were able to derive the analytical
formulas for the autocorrelation function and the power
spectrum in a very good agreement with direct numerical
simulations of the original Langevin equation. The
power spectrum has a pronounced peak at the frequency
corresponding to the delay time, whose amplitude has
a maximum at a certain noise level, thus demonstrating
coherence resonance. This level corresponds to the mean
switching time comparable to the delay time. We should
emphasize the difference between this phenomenology
and the stochastic resonance which occurs in periodically
driven noisy bistable systems. In the present case, the
system is autonomous, and the characteristic time scale
corresponding to the main spectral peak is imposed by
(but not equal to) the time delay. There is no strictly
periodic component in the output signal, so the peaks of
the correlation function decay at large times. We also
studied the linear response of our system to the external
periodic force. It also has maxima at the frequencies
corresponding to the inverse delay time and its harmonics.

In a more general context of multistable dynamical sys-
tems with memory, the behavior of the system depends
on its past through some memory kernel. Such a kernel
is equivalent to multiple time delays. A similar analysis
of the correlation properties for such systems would be of
great interest. Furthermore, in applications, multiple feed-
250602-4
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FIG. 4. Linear response of model (1) for D � 0.1, T � 250,
e � 0.05, normalized by the variance of the process (circles),
compared with theory (16) (line).

back loops with different delay times occur in networks
of interacting elements, such as biological neurons, stock
traders, or Internet nodes. It is very interesting to study
the influence of noise on the dynamics of such networks.
We anticipate the emergence of spontaneous oscillations
and the resonant features similar to the effects considered
in this Letter.
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