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Ergodic theory has been approached from the side of the time averages with correlation functions
from many-body models. The condition for ergodic behavior is formulated in terms of infinite products
of certain numbers associated with time evolution. Physical properties that make a model ergodic are
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1. Introduction.—Ergodicity is a fundamental concept
in statistical mechanics [1(a)]. Very roughly and narrowly
put, it says that the time averages of dynamic functions
are the same as the ensemble averages of the same. Most
papers on this subject discuss this equality or equivalence
in the context of classical ergodic theory, many in highly
abstract terms [1(b),1(c)]. It is difficult to discern from
them the specific physical properties that make a many-
body model ergodic.

The approach of Khinchin, adapted by Kubo, is to do
the time averages on correlation functions from quantum
many-body models [2]. These correlation functions de-
scribe dynamic processes, which are measurable by inelas-
tic scattering [3]. This approach very naturally takes us to
the dynamic processes therein to look for the physical ba-
sis of ergodic behavior. Suppose an isolated body is made
to interact with a small time-dependent external field h�t�,
gradually turned on from a remote past. Denote the pro-
cess by H0�t� � H 1 V�t�, where H is the energy of the
isolated body and V �t� � Ah�t� the interaction energy, A
a dynamical variable such that �H , A� fi 0. Let x�t, t0�
be the response function of this body to h�t� [4(a)]. Sup-
pose the same body is now subjected to a small time-
independent field h, the process denoted by H 0 � H 1 V ,
V � Ah. Let x be the response function, i.e., the static
susceptibility at h � 0 [4(b)].

For these linear response functions, the ergodic hypoth-
esis would say that
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T

Z T

0

Z t

0
x�t, t0� dt0 dt � x , (1)

where T ! `, to be taken after the thermodynamic limit
[5]. Since the right-hand side of (1) is assumed finite and
well behaved, the ergodic hypothesis cannot hold if the
left-hand side (lhs) contains divergent or singular terms. If
the lhs of (1) were equal to x̃�v � 0� the zero frequency
limit of the dynamic susceptibility, the ergodic hypothe-
sis could be tested by calculating x and x̃�0� specifically
for a given many-body model. In fact, whether x̃�0� � x

(Kubo’s condition) has been studied for several models,
but the results have been ambiguous [6]. To be able to ad-
dress ergodicity in Hermitian models, we believe that there
must be given two necessary conditions: (a) the thermo-
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dynamic limit (although implicit already, it’s needed to
exclude finite systems satisfying the equality) and (b) an-
other limit given below, related to irreversibility. Then,
Kubo’s condition can be replaced with another more ex-
plicitly connected with the time evolution.

2. Dynamic response functions.—Linear response theory
says that for a stationary system x�t, t0� � x�t 2 t0� �
i��A�t�, A�t0���H if t . t0 and � 0 if otherwise. Also,
x�t� � 2 �R�t�, t . 0, where R�t� � ���A�t�, A���, A � A�0�,
and the inner product means the Kubo scalar product (KSP)
in H [3]. Since x � �A, A�, x � R�0� also. Thus both x
and x�t� flow from R�t�, which for a Hermitian H can
be obtained by the recurrence relations method [7], briefly
sketched below.

We obtain A�t� by solving Heisenberg’s equation,
�A�t� � i�H, A�t��, on a realized inner product space of d
dimensions, space S realized by KSP. Let A�t� be a vector
in space S, spanned by d basis vectors f0, f1, . . . , fd21,
satisfying � fm ,fm 0� � 0 if m0 fi m. Thus, formally,

A�t� �
d21X
m�0

am�t�fm , (2)

where am’s are basis functions which denote the ampli-
tudes of the projections of A�t� onto the basis vectors fm’s
at time t. If (2) is to be the solution of the Heisenberg
equation on space S, these basis vectors and functions must
satisfy certain model-dependent recurrence relations (RR1
and RR2).

Starting with f0 � A, we can obtain by RR1 the basis
vectors one by one, thereby d also. If f0 � A, am�t �
0� � 1 or 0 if m � 0 or not (boundary conditions), and
a0�t� � R�t��x, x � �A, A� , `. The basis functions
are connected by RR2,

Dm11am11�t� � 2 �am�t� 1 am21�t� ,

0 # m # d 2 1 , (3)

where Dm � � fm, fm��� fm21, fm21�, mth recurrant. The
complete set of the recurrants, s � �D1, D2, . . . , Dd21�,
is made up of the (model dependent) lengths of the basis
vectors. Thus it describes the shape of S [8].

If m � 0 in (3), with a21 � 0,

D1a1�t� � 2 �a0�t� . (4)
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Since a0�t� � R�t��x, the lhs of (4) is x�t��x. Let
ãm�z� � T�am�t��, Rez . 0, where T is the Laplace
transform operator. Then, (4) becomes

x̃�z��x � 1 2 zã0�z� . (5)

If z � iv 1 0, where v is the frequency, (5) states the
fluctuation dissipation theorem [3]. In addition it con-
tains a basis for Kubo’s ergodicity condition. If z ! 0
in (5), x̃�z � 0� � x if ã0�z ! 0� � const. Excluded
are ã0�z� ! 0 and ` as z ! 0 [9].

Now apply T on (3). Setting m � 1, we can obtain an
expression for ã1�ã0, which may be used in (5). Succes-
sively doing so we obtain (noting Dm � 0 if m $ d for a
d-dimensional S),

ã0�z� � 1�z 1 D1�z 1 D2�z 1 · · · 1 Dd21�z , (6)

a continued fraction of order d 2 1. If d , ` as in
some models, ã0�z� is a meromorphic function. Thus,
Imx̃�v� consists of a finite number of resonant frequen-
cies and R�t� is not irreversible [10]. To obtain R�t�
that is irreversible, a model must have a state of d � `

[condition (b)] [11(a)].
3. Infinite products and models.—If d ! `, (6) be-

comes an infinite continued fraction of Stieltjes in the
s-fraction form. By taking z ! 0 therein (after d ! ` if
allowed) we can write it as

ã0�z ! 0� �
D2D4D6 . . .
D1D3D5 . . .

� W , (7)

an infinite product, said to be the canonical form of W .
The numbers appearing in (7) are the structural details of
space S. W probably cannot be calculated directly from
the canonical form except in trivial cases [11(b)]. But it
can be calculated indirectly by two equivalent ways: (a)
taking the z � 0 limit if ã0�z� is known and (b) evaluatingR`

0 a0�t� dt if a0�t� is known. Returning to (5), we can
now state the necessary and sufficient condition for ergodic
behavior. If 0 , W , `, a model is ergodic with respect
to variable A. If W � 0 or `, it is not.

We first illustrate the evaluation of W through the hy-
perbolic secant memory a0�t� � secht, used in dynamics
of certain liquids [12]. This form of memory derives from
space S of s � �12, 22, 32, . . .�. For this s we obtain W �
p�2 � W�Wallis� from the canonical form, first given by
Wallis many years ago. On the other hand

R`
0 secht dt �

p�2. Also, ã0�z� � T�secht� � 1�2	c�z�4 1 3�4� 2
c�z�4 1 1�4�
jz�0 � p�2, c�z� � d logG�z��dz. We
now evaluate W in three other simple models to see what
makes them ergodic and how they may be broken.

A. Harmonic oscillator chains: For a nearest-neighbor
(nn) coupled classical harmonic oscillator (HO) chain
of 2N atoms with periodic boundary conditions, let the
masses be the same m except one m0 (tagged atom),
parameterized by l � m�m0 (the coupling constants the
same). If A � p0 the momentum of the tagged atom,
space S has d � 2N 1 1 and s � �2l, 1, 1, . . . , 2�. If
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N ! `, d ! `, and s ! �2l, 1, 1, . . .� [13(a),13(b)].
In this trivial case of s, we obtain W � 1��2l�
from the canonical form, also by setting z � 0 in
ã0�z� � 1�	�1 2 l�z 1 l�z2 1 4�1�2
 [13(a)]. If l is
finite, W is finite and the model is ergodic with respect to
p0. If the tagged atom is perturbed, the perturbed energy is
delocalized throughout the chain. Time averaging of this
dynamic process singles out the v � 0 mode (coherent
translation) as the “ergodic mode.”

If l ! `, the tagged atom appears as if attached to
walls on both sides. The perturbed energy is reflected by
the walls. The translation mode is lost and ergodic mode
is destroyed (localization limit W � 0). If l ! 0, the
tagged atom becomes a Brownian particle, moving along
little affected by the vibrations of the little masses. The
translation mode exists but is incoherent and the ergodic
mode is again destroyed (ballistic limit W � `).

Let m0 now denote any one of the HOs on a Bethe lattice
of q coordination number (but m0 � m). If N ! `, d !
` also and s ! �q, 1, q 2 1, 1, q 2 1, 1, q 2 1, . . .� [14].
By the canonical form, W � 0 if q $ 3, also by ã0�z !

0� � Cz, where C � �q 2 1���q�q 2 2�. It is at the lo-
calization limit. A Bethe lattice has no translation mode.

If a chain is of diatomic masses m1 and m2 regularly
alternated, space S for p1 (of any one with m1) has s �
�2l, 1, 1, l, l, 1, 1, l, l, . . .�, where now l � m2�m1. We
find W � ã0�z � 0� � 1�

p
2l�l 1 1� [15]. If l is finite,

there exists a coherent translation mode in the chain, i.e.,
ergodic with respect to p1 just as in a monatomic chain
�l � 1�. This structure is a rich source of infinite products.

B. Spin-1/2 XY chains: For H � 2J
P

i�s
x
i sx

i11 1

s
y
i s

y
i11�, sN11 � s1, a0�t� is known for the x and z

components of a single spin at high temperatures and
N ! ` [16,17(a)]. If A � sx (a spin at any site), space
S has s � �1, 2, 3, . . .� with 2J2 � 1 [16(b)]. Thus
W �

p
W�Wallis� �

p
p�2, also by the integration of

a0�t� � exp�2t2�2� and by setting z � 0 in ã0�z� �
T�exp�2t2�2�� �

p
p�2 exp�z2�4�erfc�z�

p
2�. Since W

is finite, the model is ergodic with respect to spin compo-
nent sx or sy . The v � 0 mode corresponds to a coherent
rotation in the xy plane of the interaction in spin space.

If A � sz (at any site), then a0�t� � �J0�t��2, now with
J � 1 [17(a)]. Also, ã0�z� � T	�J0�t��2
 � 1�zF�1�2,
1�2, 1, 24�z2�. Thus W � ã0�z � 0� � 2

1
p logz, z !

01, attaining the ballistic limit, meaning that the model is
nonergodic with respect to spin component sz . The log di-
vergence of W is also seen from a0�t ! `� � 0�1�t�. The
equation of motion of the z component of a spin at site 0
is �sz

0 � i�sy
0sx

00 2 sx
0 s

y
00�, 00 � 61. The motion resembles

a vortex line moving in the direction perpendicular to the
plane of spin interaction. It is analogous to an incoherent
translation [17(b)].

C. 3D Electron gas: For an electron gas at the ground
state, let A � rk , the density operator at wave vector k,
measured in units of the Fermi wave vector kF � 1. If k .

1 and the electronic density rS � 3.5, space S is given by
250601-2
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s � ���2s, 2.1, 2�s 1 1�, 2.2, 2�s 1 2�, 2.3, . . . ���, where s �
3k2�16x, x � �KE�H , where KE is the kinetic energy. At
rS � 3.5, s � 0.2568k2; and s � 1 if k � 2 [18].

For this space, a0�t� � M�s, 1�2, 2t2�2� � G�1�2��
G�1�2 2 s� �t�2�22s as t ! `, where M is the Kummer
function. If, e.g., s � 1�2, W �

p
p�2, obtained fromR

M dt, another source of infinite products. From the
canonical form we can see that W ! 0 (localization)
if s ! ` (i.e., k ! `). At very short wavelengths, the
density fluctuations resulting from inelastic scattering take
place over very small regions of space; and they cease to
be ergodic when the inelastic scattering is at is deepest.

4. Long time behavior.—The long time behavior of
a0�t� may be deduced as a metrical property of A�t�
in space S. In addition to a0�0� � 1 (boundary con-
dition), ja0�t�j # 1 by the Schwarz inequality. Let
d�t� � kA�t� 2 A�0�k, where kAk2 � �A, A� , `, A �
A�0�. If H is Hermitian, there is an invariance property
kA�t�k � kAk [7(a)]. Hence,

d2�t� � 2kAk2�1 2 a0�t�� . (8)

If d ! ` (first), by the orthogonality (2) and the invariance
property d�t ! `� � dmax �

p
2 kAk. By (8), for space

S of d � `,

a0�t ! `� � 0 . (9)

This irreversibility is only a necessary condition for ergod-
icity [19]. The sufficient condition is that

a0�! `� � t2x, x . 1 , (10)

if a0�t� is monotonically decreasing. Then, d�dta0�t� �
0, d2�dt2a0�t� � 0, . . . , dk�dtka0�t� � 0, k , `, all
evaluated at t � `. It follows from RR2 that a1�t� � 0,
a2�t� � 0, . . . , ak �t� � 0, k , `, at t � `. They im-
ply that the projections of A�t� onto 	 fk
 vanish, i.e.,
���A�t�, fk��� � 0 for 0 # k , `, as t ! `. As a result,
the trajectory of A�t� on S is irreversible if d ! `. For
those nonmonotonically decreasing, e.g., J0�t�, j0�t�, the
derivatives of the basis functions also vanish for all finite
orders as t ! `.

5. Concluding remarks.—We shall now examine the er-
godic hypothesis more grossly. Equation (1) may be ex-
pressed as [by dividing both sides by x and recalling
R�t��x � a0�t�] [20]

x̃�0��x 1 a0�T� 2 W�T � 1, �T ! `� . (11)

The irreversibility, i.e., a0�`� � 0 has often been thought
to be a sufficient condition [2,6(a)]. But as (11) shows, it
is evidently insufficient by itself to weigh the hypothesis.
Our model analysis also has shown that the irreversibility
in a Hermitian model is a metrical property of space S
only. The hypothesis is tested sufficiently by W .

In our analysis d (dimensionality of space S) is a fun-
damental parameter. If d , `, the spectrum of ã0�z� is
discrete, thus a0�t� periodic. If d ! `, the spectrum be-
comes continuous, whereupon a0�t� is irreversible and er-
godic behavior possible. This parameter d brings to mind
250601-3
something similar in the analysis of 1D iterative maps, e.g.,
logistic map [21]. In the bifurcation of stable fixed points
on route to chaos, the distribution of iterates is discrete af-
ter a finite number of iterations (corresponding to a finite
d), where the Lyapunov exponent is nonpositive. The dis-
tribution becomes dense in a chaotic region reached after
an infinite number of iterations, where the Lyapunov ex-
ponent is positive and ergodic behavior said to exist.
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