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We develop a method allowing us to reconstruct individual tastes of customers from a sparsely con-
nected network of their opinions on products, services, or each other. Two distinct phase transitions
occur as the density of edges in this network is increased: Above the first, macroscopic prediction of
tastes becomes possible; while above the second, all unknown opinions can be uniquely reconstructed.
We illustrate our ideas using a simple Gaussian model, which we study using both field-theoretical
methods and numerical simulations. We point out a potential relevance of our approach to the field of

bioinformatics.
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Mainstream economics maintains that human tastes re-
flected in consumer preferences are sovereign, i.e., not sub-
ject to discussion or study. It postulates that consumer’s
choice of products or services is the outcome of a com-
plete and thorough optimization among all possible op-
tions, and, therefore, his/her satisfaction cannot be further
improved. Such a doctrine, though often challenged from
both within [1] and outside economics, is still dominant.
However, recently many business practitioners started to
exploit the affinity in people’s tastes in order to predict
their personal preferences and come up with individu-
ally tailored recommendations. Our basic premise is that
people’s consumption patterns are not based on the com-
plete optimization over all possible choices. Instead, they
constitute just a small revealed part of the vast pool of
“hidden wants.” These hidden wants, if properly exploited,
can lead to much better matches between people and prod-
ucts, services, or other people. In the economy of the past
such opportunities were hardly exploitable. Things have
changed in the course of the current information revolu-
tion, which both connected people on an unprecedented
scale and allowed for easy collection of the vast amount
of information on customer’s preferences. In just a few
years the Internet has already changed much of our tra-
ditional perceptions about human interactions, both com-
mercial and social. We believe that technical advances in
wireless and other network interfaces are imminent of be-
ing able to capture the necessary information virtually free
and to put this theory to use.

Our aim is to predict yet unknown individual consumer
preferences, based on the pattern of their correlations with
already known ones. Predictive power obviously depends
on the ratio between the known and yet unknown parts.
When the fraction of known opinions p is too small, only
occasional predictions are possible. When it surpasses the
first threshold, which we refer to as p;, almost all un-
observed preferences acquire some degree of predictabil-
ity. Finally, for p above the second higher threshold p»,
all these unobserved preferences can be uniquely recon-
structed. In what follows we describe a simple model of
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how customer’s opinions are formed and spell out in some
details basic algorithms allowing for their prediction.

To make this discussion somewhat less abstract let us
consider a matchmaker or an advisor service which already
exists on many bookselling websites that personally rec-
ommends new books to each of their customers. In order
for such recommendation to be successful one needs to as-
sume the existence of some “hidden metrics” in the space
of reader’s tastes and book’s features. In other words, the
matchmaking is possible only if opinions of two people
with similar tastes on two books with similar features are
usually not too far from each other. In this work we use the
simplest realization of this hidden metrics. We assume that
each reader is characterized by an M-dimensional array
r= (W, r@, . r™) of his/her tastes in books, while
each book has the corresponding list of M basic “features”
b= bWY,p® .. b™)[1]. An opinion of a reader on
a book is given simply by an overlap (scalar product) ()
of reader’s vector of tastes and book’s vector of features:
Q=r-b= Zﬁf:l r@p@ The matchmaker has some
incomplete knowledge about opinions of his customers on
the books they have read, and he uses it to reconstruct yet
unknown opinions (overlaps) and to recommend books to
its customers.

The central position of our matchmaker with respect
to its customers makes its services dramatically different
from those of the so-called “smart agents” [2], whose goal
is to anticipate and predict tastes of their individual owners.
Indeed, the scope of recommendations of a smart agent is
severely limited by the fact that each of them serves its
own master, so that others would not cooperate. On the
other hand, our matchmaker is a completely neutral player
in an economic game, who is able to synergistically use the
knowledge collected by all players/agents to everybody’s
advantage (including his own).

The information about who-read-what is best visualized
as a bipartite undirected graph in which vertices corre-
sponding to readers are connected by edges to vertices
corresponding to books each of them has read and reported
opinion to the matchmaker. Similar graphs (or networks)
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were recently drawn to the center of attention of the statis-
tical physics community [3—5] under a name “small world
networks.” For example, statistical properties of a bipartite
graph of movie actors connected to films they appeared in
were studied in [3,4], while that of scientists and papers
which they coauthored were studied in [5]. In this Letter
we go beyond empirical studies or simple growth models
of such graphs. The new feature making the graphs intro-
duced in this work richer than ordinary undirected graphs
is that in our graphs each vertex has a set of M “hidden”
internal degrees of freedom. Consequently, each edge car-
ries a real number (), representing the similarity or overlap
between these internal degrees of freedom on two vertices
it connects. In our case this number quantifies the match-
maker’s knowledge of an opinion that a given customer
has on a given product. Therefore, we would refer to such
graphs as knowledge or opinion networks.

In the most general case any two vertices in the knowl-
edge network can be connected by an edge. It is realized,
for instance, if vectors ry,ry,...,ry stand for strings of
individual “interests” in a group of N people. The over-
lap €);; = r; - r; measures the similarity of interests for
a given pair of people and can be thought of as the “qual-
ity of the match” between them. The matchmaker’s goal
is to analyze this information and to recommend to a cus-
tomer i another customer j, whom he has not met yet,
and who is likely to have a large positive overlap with
his/her set of interests. Mutual opinions can be conve-
niently stored in an N X N symmetric matrix of scalar
products Q). In the above case any element of this matrix
can be in principle “reported” to the matchmaker. Dif-
ferent restrictions imposed on this most general scenario
describe other versions of our basic model such as the fol-
lowing: (1) An advisor service recommending N; prod-
ucts to N, customers (e.g., our model of books and readers
from the introduction). In this case the square matrix ()
has N, + N, rows and columns, while all entries known
to the matchmaker are restricted to the N, X N, rectangle,
corresponding to opinions of customers on products. (2) A
real matchmaking service recommending N, men and N,,
women to each other. Here we assume that each man and
woman can be characterized by two M-dimensional vec-
tors: the first one is the vector q of his/her own “quali-
ties,” while the second one d represents the set of his/her
“desires,” i.e., desired ideal qualities that he/she is seek-
ing in his/her partner. The opinion of a person i on a
person j is then given by a scalar product d; - q;, while
the opposite opinion has in general a completely different
value d; - q;. The full (2N,, + 2N,,) X (2N,, + 2N,,)
overlap matrix is still symmetric but only two small sec-
tors, containing N, X N,, elements each, are accessible to
the matchmaker.

With a small modification this last scenario can be ap-
plied to a completely different problem, namely that of
physical interactions in a set of biological molecules such
as proteins. It is known that high specificity of such in-
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teractions is achieved by the virtue of the “key-and-lock”
matching of features on their surfaces. Given the space of
possible shapes of locks and keys, each molecule can be
described by two vectors 1;, k; of 0’s and 1’s which de-
termine which keys and locks are present on its surface.
Provided that the key k¢ uniquely fits the lock /%, the
strength of the interaction between these two molecules
is determined by Q;; = k; - 1; + k; - 1,

In the rest of the paper we concentrate only on the most
general nonbipartite case of an N X N matrix of overlaps
of interests in a group of N customers and leave other more
restricted situations for future work [6]. The matchmaker
always has only partial and noisy information about the
matrix €} due to several factors: (1) First and most impor-
tantly, the matchmaker knows only some of the opinions
);; of his customers on each other, which he uses to guess
the rest. (2) Inreal life the overlap could never be precisely
measured. In the simplest case of an extremely narrow
information channel customers report to the matchmaker
only the sign of their overlap with other customers. One
can also imagine a somewhat wider channel, where the
matchmaker asks his customers to rate their satisfaction by
a grade system, the finer the better. (3) The loss of infor-
mation due to a narrow channel between the matchmaker
and its customers can be further complicated by a random
noise in reporting, which would inevitably be present in
real life situations. Indeed, we are far from assuming that
the scalar product of tastes and features completely de-
termines the customer satisfaction with a product, or that
similarity of interests is all that matters when two people
form an opinion about each other. One should always leave
room for an idiosyncratic reaction, which does not result
from any logical weighting of features. Our hope is that
strong mutually reinforcing correlations due to the redun-
dance of information stored in an idealized matrix () would
manifest themselves in a large enough group of customers
even when they are masked by a substantial amount of
idiosyncratic noise. In principle, all these three sources
of noise and partial information are present simultaneously.
However, in this work we will treat them separately and
restrict ourselves only to the case where the matchmaker
knows the exact values of all overlaps reported to him.
It is easy to see how correlations between matrix ele-
ments allow the matchmaker to succeed in his goal of
prediction of yet unknown overlaps. For example, the
known values of 21 = r; - r; and {)»3 = r, * r3 some-
what restrict the possible mutual orientation of vectors r
and r3, and, therefore, contain information about the value
of the yet unknown overlap (},3. Below we will demon-
strate that the predictability of an overlap between two
points that are already connected by a chain of known over-
laps of length L is proportional to M ~~1/2 and, there-
fore, exponentially decays with L for M > 1. Hence, an
appreciable prediction becomes possible only when two
points are connected by exponentially many mutually re-
inforcing paths.
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The amount of information collected by the matchmaker
on its customers can be conveniently characterized by ei-
ther the number K or the density p = 2K/N(N — 1) of
known overlaps among all N(N — 1)/2 off-diagonal ele-
ments of the matrix. For very small K all edges of the
knowledge network are disconnected and no prediction is
possible. As more and more edges are randomly added to
the network, the chance that a new edge would join two
previously connected points, i.e., the probability to form a
loop in the network, increases. It is exactly in this situa-
tion the matchmaker had some predictive power about the
value of the new overlap before it was observed. However,
this excess information would disappear in the thermody-
namic limit N — o until the density of edges reaches the
first threshold p; = 1/(N — 1). This threshold is nothing
else but a percolation transition, above which the giant con-
nected component (GCC) appears in a random graph. For
p > pi the fraction of nodes in the GCC rapidly grows,
exponentially approaching 100%. It means that already
for a moderate ratio p/p; almost every new edge added
to the graph would join two previously connected points.
This transition would also manifest itself in the behavior
of the entropy of the joint probability distribution of un-
known overlaps [6].

One has to remember though that the predictive power
of the matchmaker is exponentially small for long loops.
That means that while the typical diameter of the graph is
still large, the loop correlation is too weak to significantly
bias most of the unknown overlaps. The reliable predic-
tion becomes possible only for much higher values of p.
Let us calculate p,—the point of the second phase tran-
sition, above which the values of all unknown overlaps
are completely determined by the information contained
in known ones. Using a geometrical language at this point
the knowledge network undergoes a “rigidity percolation”
phase transition, at which relative orientations of vectors r;
become fixed. Such transition is possible only for N > M
since only in this case Q) contains redundant information
about components of all vectors r;. The position of the
second phase transition p, can be determined by carefully
counting the degrees of freedom. For N > M the over-
lap matrix Q) has very special spectral properties: it has
precisely N — M zero eigenvalues, while the remaining
eigenvalues are strictly positive. An easy way to demon-
strate this is to recall that the overlap matrix can be writ-

ten as ) = RRT, where R is the N X M rectangular

matrix formed by vectors r,(a) = R;q. The singular value

decomposition (SVD) technique allows one to “diagonal-
ize” R(N > M), that is, to find an M X M orthogonal
matrix V (VVT = 1), an M X M positive diagonal matrix
D,andan N X M matrix U formed by M orthonormal N-
dimensional vectors, such that R = UDV. Now it is easy
to see that () = UD?>U" has precisely M positive eigen-
values equal to squares of the elements of the diagonal
matrix D, and N — M zero eigenvalues. The number of
degrees of freedom of Q is equal to the NM degrees of
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freedom of R minus M(M — 1)/2 of the “gauge” degrees
of freedom of the orthogonal matrix V, which have no in-
fluence on elements of (). Once the number of known
elements K exceeds the total number of degrees of free-
dom of (), the remaining unknown elements of ) can be
in principle reconstructed. Therefore, the second phase
transition happens at

_ MQN — M + 1)
P27 NN =D

~ 2M/N. (1)

Here the = sign corresponds to the limit N > M.

Practically, however, in order to calculate the set of un-
known overlaps one needs to solve a system of nonlin-
ear equations with a huge number of unknown variables,
which is a daunting task. To this end we came up with a
simple and efficient iterative numerical algorithm that uses
the special spectral properties of {: (1) Construct the ini-
tial approximation (), to € by substituting 0 for all its
unknown elements. (2) Diagonalize Qa, and construct the
matrix Q; by keeping the M largest (positive) eigenval-
ues and eigenvectors of ),, while setting the remaining
N — M eigenvalues to zero. (3) Construct the new re-
fined approximate matrix Q, by copying all unknown ele-
ments from Q;, while resetting the rest to their exactly
known values. (4) Go to the step (2). As shown in Fig. 1
for p > pa, Q. converges to Q exponentially fast in the
number of iterations n. Numerical simulations also indi-
cate that the rate of this exponential convergence scales as
(p — p2)? above the second phase transition (see the inset
of Fig. 1).

Below p» this algorithm performs rather poorly and the
error may even grow with the number of iteration steps.
This is to be expected since in this region there is more

—_

error

e

10° ® o
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number of iterations
FIG. 1. The average error in the value of unknown matrix

elements of () as a function of the number of iterations. All
ri" are independent Gaussian random numbers. The parameters
of the model are M = 9, N = 50, corresponding to p, = 0.34.
The inset shows the scaling of an exponential convergence rate
as a function of p — 0.34. The solid line has the slope 2.
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than one solution for the Q, consistent with a set of con-
straints, imposed by K known matrix elements. While our
iterative algorithm always converges to one of such so-
lutions, barring an unlikely accident, this solution is far
from the set of “true” values of unknown matrix elements.
In this situation the best thing that a matchmaker can do
is to calculate the average value ((),,) of each unknown
element in the ensemble of all matrices, consistent with
a given set of K constraints. We have succeeded in esti-
mating () ,,) analytically. This calculation involves rather
heavy algebra and will be reported elsewhere [6].

In the above discussion the parameter M was treated
as fixed and known property of the system. However, in
real life one usually does not know a priori the number
of relevant components of an idealized vector of tastes
or features. Here we want to propose a criterion on how
to optimally choose it. If the number of known overlaps
K is small, it would be useless to try to model the ma-
trix using a high-dimensional space of tastes. Indeed, all
the free play allowed by a large M would not give the
matchmaker much of a prediction power anyway. This
leads us to a conjecture that the optimal way for a match-
maker to select an effective number of internal degrees
of freedom Mcg¢ is to do it in such a way that the sys-
tem is balanced precisely at or near the critical threshold
p2. In other words, given K and N one should solve the
equation NMgr — Meff(Meff - 1)/2 = K to find Mt =
[N +1/2 — (N + 1/2)? — 2K] = K/N.

Finally, we introduce a particularly simple analytically
tractable example of a knowledge network, where each
component r{* of a hidden vector r; is independently
drawn from a normal distribution. The joint probability
distribution P(Q)) of all N (N + 1)/2 elements of the
(symmetric) overlap matrix () is then given by a multidi-

mensional integral P Q) = ff fl_[, a(dr(a)/\/ 27) X

expl— 3o 12/20 i, 6(Qi; = S r*'ri®). Us-
ing the standard integral representation for the § function,
8(x) = [~ . exp(iAx)dA/(27r), and calculating exactly

the path integral, now quadratic in r;*’, one arrives at a
remarkably elegant and compact expression [7]:

= [ [ T2 ewn)

x det(1 + iA)™M/2, )

The matrix 1 is the N X N unity matrix, while A is a sym-
metric matrix with elements 2A;; on the diagonal and A;;
off the diagonal. This expression is the multidimensional
Fourier transform of the joint probability distribution
P(Q), so that ®(A) = det(1 + iA)™/2 is nothing else
but the generating function of this distribution. As usual,
Taylor expansion of the generating function in powers of
A;j around A = 0 allows one to calculate any imaginable
correlation between integer powers of ();;. It is more
convenient to work with irreducible correlations, gener-
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ated by the Taylor expansion of ¢(A) = In(P(A)) =
—(M/2)In[det(1 + iA)] = —(M/2)T{In(1 + iA)]. A
surprising consequence of the above exact expres-
sion for ¢(A) is that all irreducible correlations of
matrix elements are proportional to M. In particu-
lar, the expansion ¢(A) = (M/2)>;_, Ti[(—iA)L]/L
allows one to calculate any correlation of the type
Qi Qi -+ Q4 ,1,Q4,5,)) = M, corresponding to a
given non-self-intersecting loop on the network. The
presence of such cyclic correlations indicates that signs of
matrix elements are weakly correlated. Taking into ac-
count that each [Q;;| ~ VM and using scaling arguments
it is straightforward to demonstrate that the predictability
of one of the overlaps in the loop of len %th L based on the
knowledge of others scales as M~ !

In this Letter we have described a general framework
allowing one to predict elements from the unobserved part
of a knowledge network based on the observed part. Pre-
diction power was shown to strongly depend on the ratio
between these two parts. While our original motivation
was to model a commercial matchmaking service in the
internet age, the implications go well beyond. We point
out that our general framework, developed for knowledge
networks, could also be of much importance in the field
of bioinformatics, where cross correlations, mutual inter-
actions, and functions of large sets of biological entities
such as proteins, DNA binding sites, etc., are only partially
known. It is conceivable that a similar approach applied
to, e.g., a large matrix of protein-protein interactions [8]
would prove to be fruitful.
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