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Real quantum systems couple to their environment and lose their intrinsic quantum nature through the
process known as decoherence. Here we present a method for minimizing decoherence by making it
energetically unfavorable. We present a Hamiltonian made up solely of two-body interactions between
four two-level systems (qubits) which has a 2-fold degenerate ground state. This degenerate ground
state has the property that any decoherence process acting on an individual physical qubit must supply
energy from the bath to the system. Quantum information can be encoded into the degeneracy of the
ground state and such coherence-preserving qubits will then be robust to local decoherence at low bath
temperatures. We show how this quantum information can be universally manipulated and indicate how
this approach may be applied to a quantum dot quantum computer.
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One of the most severe experimental difficulties in quan-
tum information processing is the fragile nature of quan-
tum information. Every real quantum system is an open
system which readily couples to its environment. This
coupling causes the quantum information in the system to
become entangled with its environment, which in turn re-
sults in the system information losing its intrinsic quantum
nature. This process is known as decoherence. Circum-
vention of this decoherence problem has been shown to be
theoretically possible with the development of the theory
of fault-tolerant quantum error correction [1]. The set of
requirements to reach the threshold for such fault-tolerant
quantum computation is, however, extremely daunting. In
this Letter we present a quantum informatics method for
suppressing the detrimental effects of decoherence, while
at the same time allowing for robust manipulation of the
quantum information, in the hope that this method will aid
in breeching the threshold for robust quantum computa-
tion [2].

In the absence of coupling between a system and its
environment, the system and environment have separate
temporal evolutions determined by their individual energy
spectra. When a small interaction (relative to these energy
scales) is switched on between the two, the resulting
evolution is dominated by pathways that conserve the
energy of the unperturbed system plus environment (rotat-
ing wave approximation, see [3]). Under the assumption
of such a perturbative interaction, energetics play a key
role in determining the rate of decoherence processes.
Such energy conserving decoherence has three possible
forms: energy is supplied from the system to the environ-
ment (cooling), energy is supplied from the environment
to the system (heating), or no energy is exchanged at all
(nondissipative). Thus, even when the environment is a
heat bath at zero temperature, cooling and, especially,
nondissipative interactions can be a major source of
decoherence.
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The spirit of our approach to reducing decoherence is to
force all reasonable decoherence mechanisms to be inter-
actions which heat the system, such that at low bath tem-
peratures decoherence is energetically suppressed. This is
done by encoding into logical qubits which are the ground
state of a particular engineered Hamiltonian. While all dis-
sipative and dephasing processes act on the physical qubits,
the only source of decoherence on the encoded qubits de-
rives from nonenergy conserving decoherence pathways,
which are by definition perturbatively weak. In particu-
lar, we will show the existence of a degenerate collec-
tive ground state of pairwise interacting two-level systems
(qubits), which possesses the property that any local opera-
tion on an individual physical qubit must take the system
out of this collective ground state. Quantum information
can be encoded into the degeneracy of this ground state,
to make an encoded qubit that is protected from any local
decoherence which cannot overcome the established en-
ergy gap.

Collective spin operations.—Let Hn � ��2�≠n be a
Hilbert space of n qubits, and let s�i�

a be the ath Pauli spin
operator acting on the ith qubit tensored with identity on
all other qubits. We define the kth partial collective spin
operators on the n qubits, S�k�

a �
Pk

i�1 s�i�
a . The total

collective spin operators acting on all n qubits, S�n�
a , form

a Lie algebra L which provides a representation of the
Lie algebra su�2�: �S�n�

a , S
�n�
b � � ieabgS�n�

g . Thus L can
be decomposed in a direct product of irreducible repre-
sentations (irreps) of su�2�, L �

Ln�2
J�0,1�2

LnJ

k�1L2J11,
where L2J11 is the �2J 1 1�-dimensional irrep of su�2�
which appears with a multiplicity nJ . If we let �Jd�a

be the operators of the d-dimensional irrep of su�2�,
then there exists a basis for the total collective spin
operators such that S�n�

a �
Ln�2

J�0,1�2 InJ ≠ �J2J11�a .
Corresponding to this decomposition of S�n�

a , the Hilbert
space H can be decomposed into states jl, Jn , m�
classified by quantum numbers labeling the irrep, Jn,
© 2001 The American Physical Society 247902-1



VOLUME 87, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 10 DECEMBER 2001
the degeneracy index of the irrep, l, and an additional
internal degree of freedom, m. A complete set of com-
muting operators consistent with this decomposition and
providing explicit values for these labels is given by Ba �
�� �S�1��2, � �S�2��2, . . . , � �S�n21��2, � �S�n��2, S�n�

a 	 [4]. There-
fore a basis for the entire Hilbert space is given by
jJ1, J2, . . . , Jn21,Jn , ma�, with � �S�k��2jJ1, . . . , Jn, ma� �
Jk�Jk 1 1�jJ1, . . . , Jn , ma� and S�n�

a jJ1, . . . , Jn, ma� �
majJ1, . . . , Jn, ma�. The degeneracy index l of a par-
ticular irrep having total collective spin Jn is completely
specified by the set of partial collective spin eigenvalues
Jk, k , n: l 
 �J1, . . . ,Jn21�. This degeneracy is simply
due to the �nJ� different possible ways of constructing a
spin Jn out of n qubits. In Fig. 1 we present a graphical
method for understanding this degeneracy of the irreps.
The internal quantum number ma is the total spin projec-
tion along axis a.

The jl, Jn, m� states have a particular clean property
for decoherence mechanisms which couple collectively to
the system. Quantum information encoded into the de-
generacy jl� of these states is immune to collective de-
coherence. This information inhabits a decoherence-free
(noiseless) subsystem [4–7]. Noncollective or local errors
can still adversely affect decoherence-free subsystems [8].
In this paper we consider the action of independent errors
acting on a code derived from decoherence-free states and
we show that these errors can be suppressed by suitable
construction of the energy spectrum. The decoherence-free
property of the encoded states is retained in our approach.
However, the method we present here deals with indepen-
dent errors: as such, it can be used to reduce these errors
irrespective of the existence of collective decoherence.

FIG. 1. Diagram showing formation of the jl, Jn , m� states.
The degeneracy index l of a given J irreducible representation
can be found by counting the number of paths which start with
a spin-1�2 particle and which build up a total spin of J using
standard addition of angular momenta. Thus, each path in this
figure, starting from n � 1, J1 � 1�2, is in one-to-one corre-
spondence with a degeneracy index l of a given J irrep. On
is the eigenvalue of On for the final step of this pathway. The
allowed DJ transitions are shown as double-ended arrows be-
tween the energy levels of H

�4�
0 (see text for definition). Shown

on the right are the l and m degeneracies of the J4 levels. The
energy difference d corresponding to a computation on the su-
percoherent qubit will split the l degeneracy.
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Collective Hamiltonian.—The Hamiltonian H
�n�
0 �

D

2 � �S�n��2 has eigenvalues D

2 Jn�Jn 1 1�, with correspond-
ing eigenstates jl, Jn, ma�. Thus the (possibly degenerate)
ground state of such a Hamiltonian is given by the lowest
Jn states for a particular n. For n even, these states have
Jn � 0, and for n odd they have Jn � 1�2. Furthermore,
H

�n�
0 can be constructed from two-qubit interactions

alone: H
�n�
0 �

D

2 �
Pn

ifij�1 �s �i� ? �s � j� 1
3n
4 I�. Thus we see

that H
�n�
0 is nothing more than the Heisenberg coupling

�s �i� ? �s � j� acting with equal magnitude between every pair
of qubits (I is an irrelevant energy shift).

Effect of single-qubit operators.—H
�n�
0 has a highly de-

generate spectrum, with energies determined by Jn. To
determine the effect of single-qubit operations on these
states, first consider the effect of a single-qubit operation
on the nth qubit, s�n�

a . Since �s�n�
a , � �S �k��2� � 0 for k , n,

we see that s�n�
a cannot change the degeneracy index l of

a state jl, Jn , ma�. Let On � 2
1
4I 1 � �S�n��2 2 � �S�n21��2

(defined for n . 1). On determines which final step is
taken in the addition from qubit n 2 1 to qubit n (Fig. 1).
If the final step from Jn21 to Jn was taken by adding
1�2, then the eigenvalue of On will be On � Jn21 1

1
2 ,

while, if it was taken by subtracting 1�2, then On �
2�Jn21 1

1
2 �. It is convenient to replace � �S �n��2 by On

in our set of commuting operators, which can clearly be
done while still maintaining a complete set. We can then
replace the quantum number Jn by On, to obtain the ba-
sis jl, On, ma�. It is easy to verify that �On, s�n�

a 	 � S�n�
a .

If we examine the effect of s�n�
a on the basis jl, On, ma�

(where we have defined ma in the orientation correspond-
ing to S�n�

a ), we find that

�O 0
n 1 On� �l, On, ma js�n�

a jl0, O0
n, m0

a� �

madl,l0dOn ,O0
n
dma ,m0

a
. (1)

Thus we see that the only nonzero matrix elements oc-
cur when O0

n � On or O0
n � 2On. From this it follows

that the final step in the paths of Fig. 1 can either flip
sign or must remain the same. Using the relation between
the On and Jn bases, this results in the selection rules
DJn � 61, 0 for s�n�

a acting on states in the jl, Jn, ma�
basis. Note further that, if we had chosen a basis with
mb instead of ma in Eq. (1) �b fi a�, the same selection
rules would hold, but now the ma components could be
mixed by s

�n�
b . In [4] it was shown that the exchange oper-

ation Eij �
1
2I 1 2�s �i� �s � j� which exchanges qubits i and

j modifies only the degeneracy index l of the jl, Jn, ma�
basis. Because s

� j�
a � Ejns�n�

a Ejn, this implies that any

single qubit operator s
�i�
b can therefore give rise to the mix-

ing of both the spin projections ma and the degeneracy
indices l.

These selection rules must be modified for the Jn � 0
states. On � 21 and ma � 0 for all Jn � 0 states, and
any transitions between these states will therefore have
247902-2
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a zero matrix element, i.e., �l, Jn � 0, majs�n�
a jl0, J 0

n �
0, m0

a � � 0. Thus the transitions DJ � 0 are forbidden
for Jn � 0, and s�n�

a must take Jn � 0 states to Jn �
1 states. Furthermore, since �l, Jn � 0, 0js�n�

a jl0, J 0
n �

0, 0� � 0, the degeneracy index l for Jn � 0 states is not
affected by any single-qubit operation.

To summarize, we have shown that any single-qubit
operation s�i�

a enforces the selection rules DJn � 61, 0
with the important exception of Jn � 0 which must have
DJn � 11. The degenerate Jn � 0 states are therefore a
quantum error detecting code for single-qubit errors [4,9],
with the special property that they are also the ground state
of a realistically implementable Hamiltonian [10]. The
system Hamiltonian H

�n�
0 has a ground state, for n even,

with the remarkable property that all single-qubit errors
s�i�

a become dissipative heating errors.
Coherence-preserving property.— Figure 1 shows that

for an even number of qubits the Jn � 0 ground state of
H

�n�
0 is degenerate. For n � 4 physical qubits, the ground

state is 2-fold degenerate [6,9]. This degeneracy cannot
be broken by any single-qubit operator, and single-qubit
operations must take the J4 � 0 states to J4 � 1 states,
as described above. The system Hamiltonian H

�n�
0 has a

ground state, for n even, with the remarkable property that
all single-qubit errors s�i�

a become dissipative heating er-
rors. We will call this robust ground state a supercoherent
qubit. If each qubit couples to its own individual envi-
ronment, we expect that the major source of decoherence
for these ground states will indeed be the processes which
take the system from J4 � 0 to J4 � 1. What type of ro-
bustness should we expect for the supercoherent qubit? If
the individual baths have a temperature T , then we expect
the decoherence rate on the encoded qubit to scale at low
temperatures as �e2bD, where b � �kT �21. At low tem-
peratures there will thus be an exponential suppression of
decoherence.

Harmonic bath example.—As an example of the ex-
pected coherence preservation, we consider a quite general
model of four qubits coupling to four independent har-
monic baths. The unperturbed Hamiltonian of the system
and bath is H

�4�
0 ≠ I 1 I ≠

P4
i�1

P
ki

h̄vki a
y
ki

aki , where

ay
ki

is the creation operator for the ith bath mode with en-
ergy h̄vki . The most general linear coupling between each
system qubit and its individual bath is

P4
i�1

P
ki

P
a s�i�

a ≠

�gi,aaki 1 g�
i,aay

ki
�. According to the selection rules de-

scribed above we can write s�i�
a �

P
�p,q�[S A

� p,q�
i,a 1 H.c.,

where A
�p,q�y
i,a takes states Jn � p to Jn � q (and acts on l

and ma in some possibly nontrivial manner), and S is the
set of allowed transitions S � ��0, 1�, �1, 2�, �1, 1�, �2, 2�	.
In the interaction picture, after making the rotating-wave
approximation [3], we find

V�t� �
X

i,a,ki ,�p,q�[S

g�
i,ae2i��D�h̄�f� p,q�2vki �tA

� p,q�
i,a ay

ki

1 gi,aei��D�h̄�f� p,q�2vki �tA
� p,q�y
i,a aki , (2)
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where f�p,q� � q�q 1 1� 2 p�p 1 1�. Coupling to
thermal environments of the same temperature, un-
der quite general circumstances (Markovian dynamics,
well-behaved spectral density of field modes), we are led
to a master equation (see, for example, Ref. [3]),

≠r

≠t
�

X

i,a,� p,q�[S

g
� p,q�
i,a L

� p,q�
i,a �r� 1 g

� p,q�
i,a L

�p,q�
i,a �r� ,

(3)

withL
�p,q�

i,a �r� � ��A�p,q�
i,a r, A

�p,q�y
i,a � 1 �A�p,q�

i,a , rA
� p,q�y
i,a ��.

The only operators which act on the supercoherent qubit
are A

�0,1�
i,a . The relative decoherence rates satisfy g

�0,1�
i,a ~

n�T�, where n�T� � �exp�bD� 2 1�21 is the thermal av-
erage occupation number. Thus we see that, as predicted,
the supercoherent qubit decoheres at a rate which decreases
exponentially as kT decreases below D.

Finally, we note that there are additional two-qubit er-
rors on the system which can break the degeneracy of
the supercoherent ground state. Such terms will arise in
higher order perturbation theory and will result in a re-
duced energy gap of g2

D . These terms will produce decoher-
ence rates O � g2�D2� smaller than the O � g2� single-qubit
decoherence rates obtained without supercoherent encod-
ing. In the perturbative regime, g ø D, this small factor
therefore represents the limit to the protection offered by
supercoherence.

Universal quantum computation.— In order to be use-
ful for quantum computation, the supercoherent qubits
should allow for universal quantum computation. Ex-
tensive discussion of universal quantum computation on
qubits encoded in decoherence-free subsystems has been
given in [4,9] (see also [11,12]), where it was shown
that computation on these encoded states can be achieved
by turning on Heisenberg couplings between neighboring
physical qubits. This means that we need to add extra
Heisenberg couplings to the supercoherent Hamiltonian
H

�4�
0 . For a single supercoherent qubit these additional

Heisenberg couplings can be used to perform any SU�2� ro-
tation, i.e., an encoded one-qubit operation. In the present
scheme one would like this additional coupling to avoid
destroying the energy gap which suppresses decoherence.
This can be achieved if the strength of the additional cou-
plings, d, is much less than the energy gap, i.e., d ø D.
The trade-off between the decoherence rate and the speed
of the one-qubit operations can be quantified by calculating
the gate fidelity F ~ deb�D2d�. F quantifies the number of
operations which can be done within a typical decoherence
time of the system. For small d the gates are slower, while
for larger d the gap is smaller, resulting in a trade-off. F
is maximized for d0 � kT . At this maximum, F is still
exponentially enhanced for lower temperatures. In particu-
lar, Fjd�d0 ~ b21ebD.

Of more concern for the present scheme is how to
perform computation between two encoded supercoherent
qubits. It can be shown that, by using only Heisenberg
couplings, a nontrivial two-encoded qubit gate cannot be
247902-3
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done without breaking the degeneracy of the H
�4�
0 Ham-

iltonian on the two sets of four qubits. This can be cir-
cumvented by considering a joint Hamiltonian of the eight
qubits, H

�8�
0 . This Hamiltonian has a ground state which is

14-fold degenerate, including the tensor product states of
the degenerate ground state of the H

�4�
0 Hamiltonian. The

universality constructions previously presented in [4,9] can
then easily be shown to never leave the ground state of this
combined system.

Having shown how to perform quantum computation on
the encoded qubits, it is also apparent that the supercoher-
ent qubit will suffer decoherence when there is a lack of
control of the Heisenberg interactions used either in con-
structing H

�n�
0 or in performing a computation. Unless the

magnitude of fluctuations in the Heisenberg interaction is
large in comparison to the bath temperature, the resistance
of the supercoherent qubit to local decoherence is, how-
ever, unaffected by these errors. Supercoherence, then,
represents a method for eliminating the single-qubit de-
coherence process when superior two-qubit Hamiltonian
control is possible [13].

Separation of control and decoherence.—A question
which naturally arises is how the supercoherent qubits
differ from encoding into a degenerate or nearly degener-
ate ground state of a single physical system. For example,
one could encode information into the nearly degenerate
hyperfine levels of an atomic ground state. There are
essentially two differences between such a scheme and
the supercoherent qubit. The first difference lies in the
fact that the degenerate ground state of a single quantum
system can interact with its environment in such a way that
the coherence of the state is lost without the bath supplying
energy to the system, i.e., nondissipatively. However, such
a mechanism cannot affect a supercoherent qubit, because
all s�i�

a interactions have been shown above to supply en-
ergy from the bath to the system. A second difference lies
in the efficiency of manipulation of the system. If a nearly
degenerate ground state is used for quantum computation,
there is a trade-off between the speed of a single qubit
gate and the decoherence rate. The limit on the speed of
a supercoherent gate is, on the other hand, related to the
temperature of the bath, with an error rate per quantum
operation that scales in an exponentially favorable fashion.
Supercoherent qubits therefore obtain a separation between
controlled manipulation and uncontrolled decoherence,
by making the control mechanisms two-body interactions
which the single-qubit local decoherence cannot affect.

Implementation in quantum dot grids.—The technologi-
cal difficulties in building a supercoherent qubit are daunt-
ing but we believe within the reach of present experiments.
In particular, these coherence-preserving qubit states ap-
pear perfect for solid state implementations of a quantum
computer using quantum dots [14]. Related decoherence-
free encodings on three-qubit states were recently shown
to permit universal computation with the Heisenberg in-
teraction alone in [12]. The main new requirement for the
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supercoherent encoding, which allows the additional expo-
nential suppression of decoherence not naturally achieved
in decoherence-free states, is the construction of H

�4�
0 and

H
�8�
0 . H

�4�
0 can be implemented by a two-dimensional array

with Heisenberg couplings between all four qubits. H
�8�
0

poses a more severe challenge, since the most natural ge-
ometry for implementing this Hamiltonian is eight qubits
at the vertices of a cube with couplings between all qubits.
Such structures should be possible in quantum dots by
combining lateral and vertical coupling schemes. Finally,
estimates of the strength of the Heisenberg coupling in the
quantum dot implementations are expected to be on the or-
der of 0.1 meV [14]. Thus we expect that at temperatures
below 0.1 meV � 1 K, decoherence should be suppressed
for such coupled dots by encoding into the coherence-
preserving states proposed here.
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