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Hydrodynamic Instability of the Flux-Antiflux Interface in Type-II Superconductors
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A possible mechanism of the macroturbulence instability observed in fluxline systems during remag-
netization of superconductors is proposed. It is shown that when a region with flux is invaded by antiflux
the interface can become unstable if there is a relative tangential flux motion. This condition occurs at the
interface owing to the anisotropy of the viscous motion of vortices. The phenomenon is similar to the in-
stability of the tangential discontinuity in classical hydrodynamics. The obtained results are supported by
magneto-optical observations of flux distribution on the surface of a YBCO single crystal with twins.
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The interest in the physics of the vortex state in type-II
superconductors increased significantly after the discov-
ery of high-Tc superconductivity (HTS). A main rea-
son for the renewed attention is the observation of many
novel nontrivial phenomena occurring in the vortex mat-
ter of the HTS materials. The perhaps most dramatic
of these phenomena is the turbulence instability of the
vortex-antivortex interface, which was observed in 1-2-3
systems using magneto-optical (MO) imaging [1–3]. It
consists of the following. When magnetic flux is trapped
in the superconductor and a moderate field of reverse direc-
tion is subsequently applied, a boundary of zero flux den-
sity will separate regions containing flux and antiflux. In
some temperature and field range, this stable flux-antiflux
distribution can display unstable behavior characterized by
an irregular time-dependent propagation of the boundary
where fingerlike patterns develop. This contrasts strongly
with the stationary and reproducible propagation of the
flux front during virgin field penetration, when only one
flux polarity is present in the sample. It is clear that the
instability, often called macroturbulence in the literature,
cannot be understood within the frameworks of the criti-
cal state model or conventional models for flux relaxation
[4,5]. Electromagnetic instabilities of the critical and resis-
tive states in anisotropic superconductors were considered
by Gurevich [6,7]. However, these results seem not to ap-
ply as an explanation of the macroturbulence instability.

An attempt to explain this remarkable behavior of the
flux-antiflux interface was made in [8], where the insta-
bility was attributed to a thermal wave generated by local
heat release in the vortex-antivortex annihilation. Unfortu-
nately, this mechanism can hardly be accepted. Indeed, the
vortex energy consists of two terms, where one is the mag-
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netic part related to the magnetic field of the vortices. The
other part is stored within the vortex core and represents
the condensation energy. The magnetic energy of a vortex-
antivortex pair is dissipated as joule heat as they are getting
close to each other, but before the annihilation takes place.
This energy, which equals �J ? �E, where �J is the current
density and �E is the electric field generated by the vortex
motion, dissipates not only at the interface, but in the bulk
of the sample. Hence, only the release of the core energy
in the process of annihilation is concentrated near the
interface. A simple calculation shows that the core energy
is much smaller than the magnetic part and will cause only
a negligible rise of the sample temperature [9], thereby
ruling out that thermal effects are responsible for the
instability.

In this Letter, we present an explanation focusing on the
experimental fact that the instability was reported mainly
for YBa2Cu3O72d and other 1-2-3 single crystals. Less di-
rect observations indicate that the macroturbulence occurs
perhaps also in other superconducting materials [10]. A
characteristic feature of the 1-2-3 system is an anisotropy
in the electromagnetic properties. This anisotropy arises
due to two twin boundary systems oriented orthogonally
to each other in the ab plane.

The anisotropy gives rise to vortex motion with a veloc-
ity component normal to the Lorentz force. The vortices
and antivortices are forced to move towards each other
along the interface, where the tangential component of the
velocity becomes discontinuous. It is well known that hy-
drodynamical flow under such conditions can be unstable
[11]. We show that a purely hydrodynamic theory of the
vortex-antivortex system with anisotropic viscosity can ex-
plain the origin of the macroturbulence.
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Consider an infinite superconducting plate of thickness
2d with the external magnetic field �H oriented parallel to
the sample surface along the z axis. The x axis is perpen-
dicular to the plate and x � 0 in the center. Let H first
increase and then be lowered through zero to a negative
value. Then two kinds of vortices will exist in the sample:
one with field direction along the positive z axis (vortices)
and one directed oppositely (antivortices). From the sym-
metry of the problem it is sufficient to consider only the
region 0 , x , d, and Fig. 1 shows schematically the dis-
tributions N1�x� and N2�x� of vortex and antivortex densi-
ties. These densities satisfy the continuity equation,

≠Na

≠t
1 div�Na

�Va� � 0, a � 1, 2 , (1)

where �Va are the vortex and antivortex velocities. In the
regime of anisotropic viscous flow, they are related to the
Lorentz driving force by

hikNaVak � FLi , �FL �
1
c

�B 3 �J ,

�B � Na
�F0, �J �

c
4p

= 3 �B .

(2)

Here hik is the symmetrical tensor of the anisotropic vis-
cosity and F0 is the magnetic flux quantum. Equation (2)
can be rewritten as

Vai � 2
GF

2
0

4p
gik

≠Na

≠xk
, (3)

where gik is the dimensionless tensor of the inverse viscos-
ity, h

21
ik � Ggik , and the coefficient G is chosen so that

the principal values of gik are unity and ´, which satisfies
0 , ´ , 1. The case of a strong anisotropy corresponds
to ´ ! 0. Note that G increases rapidly with the tempera-
ture due to thermal depinning. We omit here the inertial

FIG. 1. Flux distribution in one-half of an infinite slab �jxj #
d� containing trapped vortices of density N1�x� in the central
region jxj # x0, and antivortices of density N2�x� penetrating
from the outside. The other symbols are defined in the text.
247005-2
term [12] because it is small relative to the Lorentz force in
the situation under consideration (at reasonably high val-
ues of the critical current density).

To solve the problem, one must also formulate boundary
conditions at the vortex-antivortex interface. Generally, the
position of the interface, x � x0, depends on the y coor-
dinate and time t as it moves with a velocity �U. The first
condition is that the total flux of vortices and antivortices
through the interface vanishes:

N1� �V1 2 �U�n 1 N2� �V2 2 �U�n � 0 . (4)

Second, both vortex polarities annihilate at the interface
with the rate proportional to the product of their densities:

N1� �V1 2 �U�n � RN1N2 . (5)

The parameter R can depend on the vortex densities and
velocities but, for simplicity, we assume here that it is a
phenomenological constant. A similar model for the an-
nihilation process was used in [8]. However, contrary to
[8], we consider the parameter R to be defined by the mi-
croscopic Meissner current of individual vortices, which is
much greater than the macroscopic currents J. Therefore,
the relative velocity of annihilating vortices and antivor-
tices is much greater than the hydrodynamic velocity Va .
As a result, the region where vortices and antivortices co-
exist and annihilation takes place is very narrow, and can
be represented by the surface x � x0�y, t�. Finally, we
take the magnetic induction to be zero, i.e.,

N1 � N2 , (6)

at x � x0�y, t�. This condition is also a direct consequence
of Eq. (4) if the vortex and antivortex densities on the
interface were equal to zero initially.

First, let us determine what the model predicts for
the unperturbed distribution profiles N1 and N2. In this
case the vortex-antivortex interface is the plane x � x0�t�
which moves with the velocity U � dx0�t��dt. A simple
analysis shows that the solution with U � const fi 0
does not exist. Indeed, it is evident that, due to the vortex-
antivortex annihilation, the total number of vortices
decreases with time and the interface moves towards the
middle of the sample with a finite velocity U�t�. As an
initial step, we calculate the stationary profile with U � 0.
With ≠N1�≠t � ≠N2�≠t � 0, Eqs. (1) and (3)–(6) give

N1�x� � N2�d�
µ

x0 1 d�2r 2 x
d 1 d�2r 2 x0

∂1�2

, N2�d� �
H0

F0
,

N2�x� � N2�d�
µ

x 1 d�2r 2 x0

d 1 d�2r 2 x0

∂1�2

, r �
4pRd

GF
2
0gxx

.

(7)

We assume r ¿ 1 since the rate of the annihilation is
fast and the viscosity is not small. Therefore, at the
interface the vortex densities are relatively small, N1 �
N2 � N2�d�r21�2 while the spatial derivatives of N1 and
N2 at x � x0 are large:
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N 0
2 � 2N 0

1 � N1r�d, N 00
2 � N 00

1 � 2N1�r�d�2.
(8)

The velocities Vax,y�x � x0� are relatively high, since they
are proportional to r1�2 near the interface. To simplify a
problem, we assume that U ø Va .

To investigate the stability of the interface with respect
to small perturbations, it is suitable to introduce the fol-
lowing dimensionless variables:

na � Na�Na�x0�, t � t�t0, t0 �
GF

2
0gxx

4pR2Na�x0�
,

j � x�L, z � y�L, L �
GF

2
0gxx

4pR
� d�r .

(9)

Normalization using the time-dependent Na ���x0�t���� is al-
lowed here since we assume that the instability develops
much faster than noticeable changes occur in Na�x0� and
U�t�. We seek for perturbations in the vortex and antivor-
tex densities of the form

na � n�0�
a 1 fa exp�lt 1 ikz 1 pa �j 2 j0�t��� .

(10)

The linearized boundary conditions should be written on
the perturbed interface,

j � j0�z , t� � j0�t� 1 dj exp�ikz 1 lt� , (11)

with the normal unit vector �n � ���1, 2ikdj�z , t����. It fol-
lows directly from Eq. (6) that dj � �f1 2 f2��2.

Equations (1) give the expressions for the parameters p1
and p2. Substituting them and Eq. (10), into Eqs. (4) and
(5), we obtain two linear algebraic homogeneous equations
relating f1 and f2. Demanding the determinant to vanish
and omitting terms of the order of �Ut0�L�2 ø 1, one
obtains the following dispersion equation for the increment
l at different wave numbers k,

l � V2 2 ek2 2 2isk 2 1 2 b .

k �
kjauj

2
, a �

gxy

gx
, u � U

t0

L
,

(12)

e � 4´��au�2, s � sgn�au�, 2b � 2n00
1 2 n00

2 ,

and V is a root with ReV . 0 of the equation

V4 1 3V3 1 V2�2ek2 1 2 2 2b� 2

V�2ek2 1 isk 1 4b� 2 3sik � 0 . (13)

Shown in Fig. 2 is the dependence of the increment Rel

on the dimensionless wave number k for different e. The
parameter b is set to unity as this follows from the quasi-
stationarity condition u ! 0. The curves demonstrate that
a positive increment exists, i.e., the planar interface be-
comes unstable, when e , ec � 0.019. The instability
occurs at not too small values of the anisotropy and veloc-
ity of the flux-antiflux interface. Furthermore, it is charac-
terized by a temporal scale given by the largest Rel, lm,
which occurs at finite k � km. For e sufficiently small,
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FIG. 2. The dependence Rel�k� at different anisotropy param-
eters ´: ´ � 0 (solid line), ´ � 0.0015 (circles), ´ � 0.005
(triangles), ´ � ´c � 0.019 (dashed line), ´ � 0.05 (boxes).

km is much greater than unity, and one finds from Eq. (13)
that lm � 1��4

p
e � 2 2, and km � 1�

p
2 e3�4.

Thus, we have identified that an instability occurs if
e , ec, which in dimensional notation is expressed as

´ , ec

∑
U tanu

2RN1�x0�

∏2

, (14)

where u is the angle between the direction of flux guiding
and the flux-antiflux interface. The above analysis allows
us to understand why the instability of the vortex-
antivortex interface has been clearly observed only in crys-
tals of the 1-2-3 system, where a pronounced anisotropy
is expected due to the twin boundaries. Moreover, the
observation of the turbulence flow in detwinned crystals
[13] can be connected with the current anisotropy caused
by the specific defect structure expected to exist in such
crystals.

As an illustration, we show in Fig. 3 turbulent behav-
ior observed in an optimally doped YBCO single crys-
tal containing a substantial amount of twinning [see 3(a)].
The crystal has a rectangular shape in the ab plane and
measures 1 mm along the longest edge. Shown in 3(b)
is the MO image of flux penetration in an external field of
100 mT applied after zero-field cooling to 45 K. One sees
that the field penetrates predominantly from some large
twin boundaries located at the bright core of the lines that
make 45± angles with the edges of the crystal. The dark
area in the center of the sample is the region not being
penetrated by a 100 mT applied field at this temperature.
In such virgin states the flux penetration is always found to
be quasistationary and fully reproducible. In 3(c) the tem-
perature is raised to 67 K, and the MO image was recorded
in the remanent state after first applying 100 mT. The
bright “aura” around the crystal is here the return field of
the flux trapped in the central part. Note that this reverse
field partly penetrates the sample near the edge. A distinct
line can be seen as a dark band going around the crystal
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FIG. 3. (a) Polarized light im-
age showing twin domains in a
small area on the crystal. The
arrow indicates the sample edge,
and the scale bar is 50 mm
long. (b)– (d) are magneto-
optical images where the bright-
ness represents the magnitude
of B’s component normal to
the surface. (b) Applied field
of Ba � 100 mT at T � 45 K.
(c) Remanent state after full
flux penetration at T � 67 K.
(d) Magnified view of the area
marked in (c).
just on the inside of the edge. This band is the annihilation
zone, which divides the crystal into two opposite magnetic
domains. The macroturbulence is here seen as a meander-
ing of the annihilation zone. Adjacent to the zone, one can
find small areas with increased flux density [see magnified
view in 3(d)]. Time resolved measurements show that the
zone develops in a highly dynamic manner where abrupt
redistributions of flux often occur. By adding an external
reverse field to the remanent state, the annihilation zone is
pushed further into the crystal and the dynamical features
become even more spectacular.

In this crystal the turbulent behavior was observed in the
interval 25–75 K. As the temperature increases, the dy-
namics of the flux/antiflux interface becomes increasingly
rapid. However, above 75 K there again appears to be no
irregular behavior of the interface.

The existence of the instability only in a definite tem-
perature region finds a simple rationalization within our
model. At low T , the viscosity increases exponentially,
and the characteristic spatial scale L, in Eq. (9), decreases
correspondingly and becomes comparable to or less than
the twin-boundary spacing. As a result, the anisotropy is
suppressed and the instability disappears. On the other
hand, close to Tc the anisotropy is no longer effective due
to thermal activation of the vortices. It is remarkable, and
in full support of our model, that in the present heavily
twinned crystal the turbulence occurs down to much lower
temperatures than found in previous studies of similar crys-
tals with only little twinning [3,14].

The presented analysis is performed for onefold symme-
try of twins. Usually, the 1-2-3 system is characterized by
a “tweed” structure of twins [see Fig. 3(a)]. Our calcula-
tion is valid if the characteristic instability “wave number”
k is large enough, i.e., 1�k ø Dd, where Dd is the charac-
teristic size of the domain containing the twin boundaries
of one preferable direction.

In conclusion, we have shown that a simple hydrody-
namic model can explain the macroturbulence phenome-
non. The aim of the paper is to reveal the main physical
mechanism, while disregarding geometrical effects and
details of the vortex annihilation. To describe the phe-
nomenon more quantitatively one should use the real I-V
characteristics instead of the “primitive” viscosity equa-
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tions. We emphasize that anisotropy can be the reason of
the macroturbulence. Such anisotropy can be created by
twins in 1-2-3 systems. However, the role of twins can
be twofold. On the one hand, the increase of twin density
gives rise to anisotropy increase. On the other hand, the
large density of twins, as well as other pinning centers, can
damp the vortex motion and, consequently [see Eq. (14)],
can damp the turbulence behavior of the flux-line system.
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