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Ghost Excitonic Insulator Transition in Layered Graphite
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Some unusual properties of layered graphite, including a linear energy dependence of the quasiparticle
damping and weak ferromagnetism at low doping, are explained as a result of the proximity of a single
graphene sheet to the excitonic insulator phase which can be further stabilized in a doped system of
many layers stacked in the staggered (ABAB . . .) configuration.
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The continuing interest in carbon-based materials has
intensified both experimental and theoretical efforts to un-
derstand their electronic properties and interaction-driven
transitions in these systems.

The problem of electronic instabilities in a single sheet
of graphite has been previously studied by means of the
Hartree-Fock and density functional methods with a focus
on the short-ranged (including on-site and nearest neigh-
bor) Hubbard-like repulsive interactions, and the intersite
repulsion was found to favor a charge density wave (CDW)
ground state [1]. This analysis did not provide, how-
ever, a proper account of the Coulomb forces that remain
long ranged due to the lack of conventional screening in
semimetals, such as graphite.

In contrast, the authors of Ref. [2] specifically focused
on the role of the Coulomb interactions. From the renor-
malization group calculation in the second order in the
dimensionless Coulomb coupling g � 2pe2�´0y, they
concluded that the renormalized coupling monotonously
decreases at low energies and, therefore, it cannot cause
any instability of the gapless paramagnetic ground state
of graphite.

Besides, the authors of Ref. [2] suggested a possible ex-
planation for the experimentally observed [3] linear energy
dependence of the quasiparticle damping [defined as the
imaginary part of the quasiparticle dispersion e � Ep 1

iS�e�] which they found to behave as S�e� � e� ln2e at
low energies. However, the large estimated value of the
bare coupling constant �g * 10� calls these results into
question and warrants further investigation.

In the present Letter, we revisit the problem of the
Coulomb interacting electrons in layered graphite and
study the nature of the ground state and the quasiparticle
spectrum at strong coupling. This time around, we
employ a nonperturbative approach by solving a nonlinear
equation for the electron Green function, which will
allow us to ascertain the status of the previous results
obtained in perturbation theory and test our theoretical
predictions against several pieces of the existing experi-
mental evidence.

The semimetallic energy band structure of a single
graphene sheet gives rise to the conduction and valence
bands’ touching each other in the two inequivalent K
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points located at the corners of the hexagonal two-
dimensional (2D) Brillouin zone. In the absence of
interactions, the low-energy quasiparticle excitations with
the momenta in the vicinity of these points labeled as
i � 1, 2 have linear dispersion E

�0�
p � 6yp, the velocity

y being proportional to the width of the electronic p band
t � 2.4 eV [4].

These excitations can be formally described by a pair of
two-component (Weyl) spinors cis, each carrying a spin
index s, which are composed of the Bloch states residing
on the two different sublattices of the bipartite hexagonal
lattice of the graphene sheet. In what follows, we choose
to combine them into one four-component Dirac spinor
Cs � �c1s ,c2s � and also treat the number of the spin
components N as an adjustable parameter, the physical
case corresponding to N � 2.

The use of the Dirac spinor representation allows one
to cast the free quasiparticle Hamiltonian in the relativis-
ticlike form, where y is playing the role of the speed
of light:

H0 � iy
NX

s�1

Z
r

Cs �ĝ1=x 1 ĝ2=y�Cs , (1)

where Cs � Cy
sĝ0 and the reducible representation

of the 4 3 4 g-matrices ĝ0,1,2 � �t3, it2, 2it1� ≠ t3
given in terms of the triplet of the Pauli matrices ti

satisfies the usual anticommutation relations: �ĝm, ĝn� �
2diag�1, 21, 21�1 ≠ 1.

In the four-spinor representation, the electron Coulomb
interaction reads as

HC �
y

4p

NX
s,s0�1

Z
r,r 0

Cs�r�ĝ0Cs�r�

3
g

jr 2 r0j
Cs 0�r0�ĝ0Cs 0�r0� . (2)

Despite the apparent lack of the Lorentz invariance, Eq. (2)
remains invariant under arbitrary U�2N� rotations of the
2N-component vector �CLs ,CRs� composed of the chiral
Dirac fermions defined as CL,Rs �

1
2 �1 6 ĝ5�Cs, where

the matrix ĝ5 � 1 ≠ t2 anticommutes with any ĝm.
The chiral invariance of Eqs. (1) and (2) brings

about the possibility of spontaneous chiral symmetry
© 2001 The American Physical Society 246802-1



VOLUME 87, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 10 DECEMBER 2001
breaking (CSB), similar to the phenomenon that has long
been studied in the relativistic fermion theories. The
CSB transition manifests itself in the appearance of a
fermion mass and gapping of the fermion spectrum, thus
breaking the continuous chiral symmetry from U�2N�
down to U�N� ≠ U�N� and developing a nonzero expec-
tation value �

PN
s Cs�r�Cs�r�	 � �

PN
s 
cy

s�A�cs�A� 2
cy

s�B�cs�B��	. The latter corresponds to the electron
density modulation which alternates between the two
sublattices (A and B).

In light of the above, one can identify the CSB order
parameter with the site-centered CDW and thus relate it
to the p � 0 value of the gap function Dp appearing in
the renormalized (and, generally, non-Lorentz invariant)
fermion Green function,

Ĝp � Zp
�eĝ0 2 yp �p �̂g� 1 Dp�21, (3)

where the interaction effects can also give rise to the non-
trivial wave function (Zp) and velocity (yp�y) renormal-
ization factors.

Because of its intrinsically nonperturbative nature, the
phenomenon of CSB evades weak-coupling analysis based
on perturbation theory. Nonetheless, similar to its relativis-
tic counterpart [5], the CSB can be revealed by a nonper-
turbative solution of the system of nonlinear equations for
the fermion Green function (hereafter p̂ � eĝ0 2 y �p �̂g),

Ĝ21
p � p̂ 1

Z d3k

�2p�3 Gp,kĝ0Ĝp1kĝ0Vk , (4)

vertex function Gp,k, and effective Coulomb interaction
Vk � 1�
�q�gy� 1 Nx�v, q�� which gets strongly modi-
fied by the intralayer polarization of the Dirac fermions,

xk � Tr
Z d3p

�2p�3 Gp,kĝ0Ĝp1kĝ0Ĝp . (5)

Further analytical progress is hindered by the fact
that, as a result of the interaction’s Vk being explicitly
non-Lorentz invariant, the gap function Dp can feature
separate dependencies on the energy e and momentum p
variables. Therefore, we choose to proceed directly with
the finite temperature counterpart of Eq. (4), in which
case the Lorentz invariance is broken regardless of the
symmetry of the fermion interactions.

In order to get a preliminary insight into the problem,
we resort to the same approximations as those made in
the previous studies of CSB in the context of QED3 [5].
To this end, we first neglect the wave function, velocity,
and vertex renormalizations (Zp � yp�y � Gp,k � 1) in
Eq. (4) whose scalar part then becomes a closed equation
for the fermion gap function. As shown in [5], neglecting
the above renormalizations in the gap equation suffices for
establishing the existence of its nontrivial solution(s) and
estimating a critical value Nc of the only remaining free
parameter, the number of fermion species.

Taking the sum over the discrete Matsubara frequencies,
we then arrive at the momentum-dependent gap equation,
246802-2
Dp �
Z d2k

8p2

tanhEk�2T
Ek

3
Dk

jk 2 pj�gy 1 Nx�0, k 2 p�
, (6)

where Ep �
q

y2p2 1 D2
p. Next, we approximate the ex-

act finite temperature fermion polarization (5) by that com-
puted in the massless case. By doing so, we overestimate
the contribution of the fermion momenta p & Dp which
is, however, unimportant, as long as the gap remains much
smaller than the high-momentum cutoff L comparable to
the maximum span of the Brillouin zone. As shown below,
this condition is indeed satisfied for N close to the critical
value Nc.

At Dp � 0 the fermion polarization is given by the ap-
proximate formula,

x�0, q� �
2T

py
2
F

Z `

0
dx ln

Ω
2 cosh

∑
yq
2T

q
x�1 2 x�

∏æ

�
1

8y2

∑
yq 1 cT exp

µ
2

yq
cT

∂∏
, (7)

which, for c � 16 ln2�p, provides an up to a few
percent accurate interpolation between the two opposite
limits: yq ¿ T where Eq. (7) agrees with the zero-
temperature result xk ~

p
k2, and yq ø T where it

exhibits thermal screening x0 ~ T [6].
Notably, at strong coupling (g ¿ 1) the screened

Coulomb interaction Vk becomes independent of the
bare coupling constant and assumes a universal form
Vk � 1�x�0, k� governed by the fermion polarization (7).

Upon differentiating Eq. (6) with respect to the momen-
tum p, one finds that for Ep . T this nonlinear integral
equation reduces to a linear differential one:

d2Dp

dp2
1

2
p

dDp

dp
1

2
pN

Dp

p2
� 0 , (8)

which has to be supplemented by the boundary conditions
D0 , ` and �Dp 1 pdDp�dp�jp�L � 0.

In turn, Eq. (8) can be readily identified with the radial
Schrödinger equation for the s-wave zero energy level in
the potential that behaves as ~ 1�p2 for p . T�y. From
the textbook solution of this problem [7], we infer that
for N . Nc � 8�p there are two independent solutions

D6
p ~ 1�p�16

p
12Nc�N ��2, neither of which can satisfy the

above boundary conditions. In contrast, for N , Nc there
exists a solution with infinitely many nodes, consistent
with the infinite number of the negative energy levels in the
1�p2 potential. Thus, only in this “centerward downfall”
regime does the solution

Dp �
T3�2

p
yp

sin

µ
1
2

s
Nc

N
2 1 ln

yp
T

∂
(9)

monotonously decrease in the interval T�y , p , L
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and satisfy the boundary condition at p � L which
reads ass

Nc

N
2 1 ln

yL

T
� 2pn 2 2 tan21

µ
1
2

s
Nc

N
2 1

∂
,

(10)

where n is a positive integer. We note, in passing, that, due
to the formal similarity between the underlying equations,
a solution with the similar critical properties has also been
discovered in the context of the 2D Cooper pairing near
the antiferromagnetic instability [8].

The highest critical temperature Tc�N� below which the
CSB order parameter sets in corresponds to n � 1:

Tc�N� � yL exp

µ
2

2pp
Nc�N 2 1

∂
. (11)

According to Eq. (11), at nonzero temperatures the criti-
cal number of fermion species gets reduced: Nc�0� 2

Nc�T � � 4p2Nc�0�� ln2�yL�T�.
In the case of QED3, the progressively more and more

refined numerical simulations [6] have demonstrated that
the results of the original analytical approach of Ref. [5]
which yielded a solution similar to Eq. (9) remain robust
against relaxing the above approximations and taking into
account both the wave function renormalization and the
vertex function satisfying the Ward identity Gp,0 � Zp .

Likewise, a numerical analysis of the coupled Eqs. (4)
and (5) confirms the existence of the solution (9) in a whole
domain bordered by the critical line (11) in the N 2 T
plane [9].

Also, the numerically evaluated characteristic ratio
2D0�Tc � 10 appears to be close to that found in Ref. [6]
which is substantially greater than the BCS value corre-
sponding to the solution Dp � const of the gap equation
with a momentum-independent kernel.

As far as the nature of the CSB transition is concerned,
the observed N dependence of the zero-momentum
fermion gap D0 ~ exp�22p�

p
Nc�N 2 1 � prompts one

to identify the breaking of the continuous chiral symmetry
as a topological (Kosterlitz-Thouless– type) phase transi-
tion in 2 1 1 dimensions [5]. Thus, the finite temperature
CSB transition occurs between the two phases which
are both chirally symmetrical, and therefore a bosonic
Goldstone mode must be present in the quasiordered
phase.

As regards the critical number of fermion species it-
self, the recent symmetry-based argument made in the
context of QED3 shows that the gap equation systemati-
cally overestimates the actual value of Nc which may, in
fact, be as low as 3�2 [10] while the gap equation yields
NQED

c � 32�p2 [5].
The demonstrated formal relationship between the finite

temperature QED3 and the problem of a single graphene
sheet suggests that in the latter case the actual critical
number of fermion species might also be less than 2, hence,
no CSB occurs.
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Nonetheless, even at N . Nc the nearby CSB transition,
albeit unreachable at any g, can still have a profound effect
on the quasiparticle spectrum both above and below the
crossover into the quantum-critical regime associated with
the zero-temperature quantum-critical point at Nc.

In the quantum disordered (low-temperature) regime
T & T��N �, where the crossover temperature T��N� van-
ishes at N ! Nc 1 0 in the same manner as Tc�N � given
by Eq. (11) for N ! Nc 2 0, the only solution of Eqs. (4)
and (5) is a massless fermion propagator which exhibits a
suppression of the residue of the bare quasiparticle pole:
Zp ! 0 for p ! 0, while the velocity yp undergoes singu-
lar renormalization and monotonously increases with de-
creasing momentum, unlike in the Lorentz-invariant QED3
where it remains constant.

By contrast, in the quantum-critical regime T * T ��N�,
the fermion propagator features a simple pole, whereas the
temperature-(but no longer momentum-)dependent factors
ZT and yT control its residue and the effective velocity,
respectively. The fermion damping is then determined by
the self-consistent equation:

S�e� �
1
N

Z dv dq
�2p�3

Ω
tanh

´ 1 v

2T
2 coth

v

2T

æ

3 Im

∑
´ 1 v 1 iS�´ 1 v�


´ 1 v 1 iS�´ 1 v��2 2 y2q2

∏

3 Im
1

x�v, q�
, (12)

which yields the universal solution: S�e� � max�e, T �,
in a general agreement with the time-resolved two-photon
photoemission data taken in the energy range 0.4 , e ,
2 eV [3]. One can expect that this characteristic signa-
ture of the CSB-related quantum-critical behavior will be
even more pronounced in the case of a graphite monolayer
deposited on an insulating surface, whereas a conducting
substrate would hamper the possibility of observing the
linear damping due to strong metallic screening.

The predicted linear damping should be possible to
observe in angular-resolved photoemission which can
specifically probe the vicinity of the K points. On the
contrary, the angular-averaged data are going to be
affected by such details of the graphite band structure as,
e.g., the saddle point in the quasiparticle dispersion which
occurs at e � 1.5 eV if the momentum resides at one
of the M points of the Brillouin zone. This saddle point
was recently argued to be a likely cause of the additional
plateaulike feature observed in the angular-averaged S�e�
[11] which is, therefore, unrelated to the many-body
phenomena discussed in this Letter.

In a stack of graphite layers with the interlayer spac-
ing d, the screened intralayer Coulomb interaction remains
dominated by the polarization xk only at q . 1�Ngd. At
still lower momenta, the kernel in Eq. (6) becomes less sin-
gular (Vk ~ 1�pq ), thus reducing the range of tempera-
tures and/or energies where the quantum-critical behavior
246802-3
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associated with the nearby CSB transition can be observed
in electron photoemission.

A finite interlayer hopping t� � 0.27 eV provides an-
other cutoff below which the particle-hole pairing corre-
lations cease to drive the system towards the opening of
the excitonic gap, and the quasiparticle damping becomes
quadratic in energy for e & t�.

In contrast, the interlayer Coulomb interaction has the
opposite effect of nudging a stack of graphite layers closer
to the CSB instability. To elucidate this point, we recall
that the common form of graphite has a crystal structure
of well-separated hexagonal layers stacked in a staggered
(ABAB . . .) configuration. As a result, each layer gets
naturally divided into two sublattices formed by the atoms
positioned just above and below the centers and corners of
the hexagons in the two adjacent layers, respectively.

Thus the interlayer Coulomb repulsion strengthens the
system’s propensity towards developing the CDW insta-
bility by favoring spontaneous depletion of one of the two
sublattices (accompanied by excess occupation of the com-
plementary one) which alternates between the layers in or-
der to keep the electrons in the neighboring layers as far
apart as possible.

Formally, one can incorporate this effect of the inter-
layer Coulomb interaction into the effective single-layer
description by adding a short-ranged four-fermion term
l�

PN
s CsCs�2 into Eq. (2). With such a term present, the

CSB transition occurs for any number of fermion species,
including N . Nc, provided that the strength of this cou-
pling exceeds a certain critical value [l . lc�N�] which
grows with N [9].

By further elaborating on the solution of Eq. (6)
obtained in the physical case N � 2 we also find out
that, upon doping the system of graphite layers, the
excitonic insulating ground state tends to spontaneously
develop a nonzero spin polarization �cy

s�A�cs�A� 1

cy
s�B�cs�B�	 � mdss0 proportional to the chemical

potential m introduced by doping [9].
This observation sheds light on the possible origin

of weak ferromagnetism which was recently observed
in highly oriented pyrolitic graphite [12]. Our findings
suggest that the latter might be not that different from the
mechanism proposed in the recent studies of hexaborides
believed to be 3D excitonic insulators [13]. Notably,
the authors of Ref. [12] excluded magnetic impurities
as a possible cause of the ferromagnetic behavior of the
magnetization hysteresis loops (also consistent with the
electron spin resonance data) observed in the samples
showing the insulatorlike temperature dependence of the
resistivity. Elaborating on the analysis of Ref. [13], we
predict that if the excitonic instability proved to be at
work, the weak ferromagnetism would have to disappear
above a certain level of doping corresponding to the
chemical potential mc � D0.

In summary, we study the problem of the Coulomb
interaction-driven electronic instabilities in layered
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graphite and propose a new explanation for the experi-
mentally observed linear quasiparticle damping which
might be a result of the relative proximity of a single
graphene sheet to the zero-temperature quantum-critical
point corresponding to the transition to the 2D excitonic
insulator. In lightly doped layered graphite, the excitonic
instability gives rise to the formation of the site-centered
CDW ground state exhibiting weak ferromagnetism, as
observed experimentally. Together with the recently
proposed explanation [14] of the apparent semimetal-
insulator transition in an applied magnetic field [15] as a
phenomenon of the magnetic field-driven CSB, it lends
further support to the discovered formal relationship
between the problem of layered graphite and the behaviors
found in the relativistic theories of the 2D Dirac fermions.
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