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We calculate the low-energy tunneling density of states n�e, T � of an N-channel disordered wire,
taking into account the electron-electron interaction nonperturbatively. The finite scattering rate 1�t

results in a crossover from the Luttinger liquid behavior at higher energies, n ~ ea , to the exponential
dependence n�e, T � 0� ~ exp�2e��e� at low energies, where e� ~ 1��Nt�. At finite temperature T ,
the tunneling density of states depends on the energy through the dimensionless variable e�

p
e�T . At

the Fermi level n�e � 0, T � ~ exp�2
p

e��T �.
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The influence of electron-electron interactions on trans-
port in disordered systems has been extensively investi-
gated for the past two decades [1]. It is well known that
the interaction has the strongest effect in low-dimensional
systems. Electron tunneling into a one-dimesional con-
ductor is suppressed by interactions even in the absence
of disorder. This suppression, which yields vanishing tun-
neling density of states (TDOS) at the Fermi level, can
be described in the framework of the Luttinger liquid the-
ory. The recently discovered carbon nanotubes provide a
unique opportunity for studying interaction effects in quan-
tum wires [2–5]. Although the properties of single-wall
nanotubes are well described by the Luttinger liquid the-
ory [6], the transport in multiwall nanotubes (MWNT) is
still not very well understood. The number of channels,
disorder strength, and carrier concentrations in these sys-
tems can vary over a wide range and are difficult to control
experimentally. Whereas some measurements indicate bal-
listic electron transport [7], most experiments exhibit diffu-
sive electron motion [5,8–10]. Furthermore, experiments
[11] demonstrate a strong suppression of TDOS n�e� near
the Fermi level (e � 0). On the other hand, the exist-
ing microscopic theory [1] treats the screened Coulomb
interaction in the first order of perturbation theory; it pro-
vides the result for the correction to the density of states,
dn�e� ~ 21�

p
e, which is valid as long as dn�e� is small.

Clearly, this result of the lowest-order perturbation theory
is insufficient for finding the behavior of TDOS n�e� in
the limit of e ! 0.

In this paper we present a theory of the zero-bias anom-
aly in the tunneling density of states in quantum wires. We
treat the dynamically screened Coulomb interaction non-
perturbatively and allow for an arbitrary value of et, where
t is the elastic momentum relaxation time of electrons, and
energy e is measured from the Fermi level. This enables us
to describe the crossover from the known Luttinger liquid
results [12] valid at higher energies, et ¿ 1�

p
N , to the

new low-energy �et ø 1�
p

N � behavior of the TDOS:
0031-9007�01�87(24)�246801(4)$15.00
n�e, T � ~ exp

Ω
2

s
e�

T
F

µ
e

p
e�T

∂æ
(1)

(hereinafter we use units with h̄ � kB � 1�. The char-
acteristic energy e� here depends on the interaction
strength g,

e� �
g

pNt
, g �

pe2

4ȳ
ln

d
R

, (2)

on the number of channels N in the quantum wire, and on
t. Here ȳ is the Fermi velocity averaged over all chan-
nels, and d ¿ R is the distance at which the electric field
is shielded [13] say, by conducting electrodes surrounding
the wire. The scaling function F�x� and its asymptotics at
x ø 1 (regime considered first in Ref. [14]) and x ¿ 1,
are presented in Fig. 1. The result (1) applies at suffi-
ciently low temperatures and energies, when the value of
the exponent in this equation is large. Note that according
to Eq. (1), at finite T the characteristic scale for the energy
dependence of TDOS is given not by T , but by a much
larger value

p
e�T .
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FIG. 1. The scaling function F�x� and its asymptotics:
F�x� � 1.07 2 x�2 for x ø 1 (dotted line), and F�x� � 1�x
for x ¿ 1 (dashed line).
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In the absence of shielding Eq. (1) is somewhat modi-
fied, as the interaction parameter g becomes a weak func-
tion of temperature and energy. We briefly discuss this
case at the end of the paper; see Eqs. (19)–(21).

Having in mind experimental applications, we focus our
discussion on carbon nanotubes. A typical MWNT con-
sists of several (up to ten) graphite monolayer sheets rolled
concentrically into cylinders. At zero doping they can be
either metallic or semiconducting, depending on the heli-
cal arrangement of the carbon hexagons. The electron band
structure of a single carbon nanotube [15] has two points
in the Brillouin zone with the Dirac-like spectrum ek �
y�k2 1 k2

��1�2; the velocity here is y � 8 ? 107 cm�s,
and the transverse momentum k� � n�R is quantized due
to the periodic boundary conditions around the circum-
ference, 2kFR # n # kFR. The number of conducting
subbands around each Dirac point N � 2kFR is deter-
mined by the radius of the nanotube and by the doping
level, m � ykF (�0.5 eV). A typical radius of the out-
ermost shell is of the order of 10 nm. Each subband has

its own Fermi velocity yn � y

q
1 2 n2�k2

FR2 and mo-
mentum kFyn�y along the cylinder axis. The electrons
are scattered between different subbands within the same
tube by impurities, lattice imperfections, and by the incom-
mensurate lattice potential of the neighboring tubes. We
consider the experimentally relevant case of the ballistic
electron motion around the circumference, l � yt . R,
and concentrate on low-energy, e , y�R, limit. Electron
tunneling at higher energies, e . yl�R2, in the opposite
case of a short mean free path, l , R, was recently dis-
cussed in Ref. [16].

In the measurements of the TDOS the tunneling current
propagates through the outermost shell [8] while the inter-
shell tunneling is largely suppressed. The role of the elec-
trons in inner shells is then believed to be reduced merely
to the dynamical screening of the Coulomb interaction be-
tween the electrons in the outer shell. Little is known about
the contribution of innershell electrons to screening since
the doping level in the inner shells is difficult to character-
ize experimentally. Two distinct scenarios can be imag-
ined: (i) the dopants are outside the nanotube, and the
doping electrons reside in the outer shell only; (ii) the
dopants are distributed uniformly inside the MWNT, which
leads to a uniform density of carriers across the shells. Be-
low we concentrate on the first scenario, when the inner
shells of the tube may be ignored. The second scenario
will be considered elsewhere.

We start with calculating the TDOS in the first order in
the screened interaction potential. This calculation follows
the well-known route first developed for the case of a dif-
fusive electron motion [17], and extended later [18,19] to
the case of an arbitrary value of et. The zero-temperature
result can be cast in the familiar [17,20] form,

dn�e�
n0

�
Z `

e
dvV �v� , (3a)
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V �v� � �
X
q�

Z `

2`

dq

2p2 G2�v, q�G2�v, q�U�v, q� .

(3b)

Here G is the impurity-renormalized vertex. Its inverse is
given by the usual impurity ladder,

G21�v, q� �
ø

v 2 qv
v 2 qv 1 i�t

¿

�
1

pn0

X
n

y21
n

3
v�v 1 i�t� 2 �qyn 1 q�y�n�2

�v 1 i�t�2 2 �qyn 1 q�y�n�2 . (4)

The product of Green functions averaged over the Fermi
surface [abbreviated as G2 in Eq. (3)] equals

G2�v, q� �
ø

1
�v 2 qv 1 i�t�2

¿

�
1

pn0

X
n

y21
n

3
�v 1 i�t�2 1 �qyn 1 q�y�n�2

��v 1 i�t�2 2 �qyn 1 q�y�n�2�2 , (5)

where qv � qyn 1 q�y�n and y�n � yn��kFR� is the
transverse velocity in the nth band, n0 �

P
n�pyn�21 is

the total density of states in the outermost shell (the sum-
mation accounts also for both spin directions and the pres-
ence of two Dirac points in the Brillouin zone).

The function U�v,q� in Eq. (3b) represents the dynami-
cally screened Coulomb interaction of electrons and is
given by

U�v, q� �
V �q�

1 2 V �q�P�v, q�
. (6)

Within the assumptions of our model, the polarization
operator here,

P�v, q, qm � � n0G�v, q�
ø

qv
v 2 qv 1 i�t

¿
, (7)

is provided by the outer-shell electrons. The bare Coulomb
potential in Eq. (6) is

V �q, qm� �
2e2

p

Z p

0
dfK0

µ
2qR sin

f

2

∂
cosmf , (8)

where K0�x� is the modified Bessel function, and we used
the fact that the momenta along the circumference of the
tube are quantized and given by qm � m�R.

To consider the low-energy behavior of dn�e�, we will
need only the long-range limit, qR ø 1, of Eqs. (6)–(8);
we find for the bare interaction

V �q, qm� �

8<
:

e2

jmj , m fi 0 ,

e2 ln�min� d2

R2 ,
1

q2R2 ��, m � 0 .
(9)

The integrals in Eqs. (3a) and (3b) are dominated by the
region of high frequencies v ¿ qy, where the dynami-
cally screened Coulomb interaction (6) has plasmon poles,
and can be rewritten as
246801-2
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V �v� � �
X
m

Z `

2`

dq
2p2

�v 1 i�t�V �q, qm�
v�v�v 1 i�t� 2 v2

m�q��
.

(10)

Here vm�q� denotes the frequency of the plasmon exci-
tations which in the long wave length limit, qd ø 1, is
given by the following equation:

v2
m�q� �

8<
: e2n0q2y

2
k ln�min� d2

R2 , 1
q2R2 ��, m � 0 ,

e2n0

jmj �q2y
2
k 1

y
2
�m2

R2 �, m fi 0 .
(11)

In Eq. (11) we introduced the average squares of the lon-
gitudinal, y

2
k , and transverse, y

2
�, electron velocities

y
2
k �

P
n ynP

n y21
n

, y2
� �

y2
P

n y21
n n2

�kFR�2
P

n y21
n

.

For e . y��R in Eq. (3a), we can approximate the sum
over m in Eq. (10) by an integral recovering the ballistic
counterpart [19] of the two-dimensional diffusive correc-
tion discussed by Egger and Gogolin [16] for short-range
interaction. However, in contrast to their conclusions,
for lower energies e , y��R the contribution of m fi 0
terms becomes energy independent for both short-range
and Coulomb interaction, in the latter case because of the
gaps in plasmon spectra. The m � 0 plasmon, on the other
hand, is gapless. Its contribution to Eq. (10) depends on
e, and has a singularity at e ! 0. Therefore, to study
the energy dependence of DOS at low energies we neglect
the nonsingular contribution of the m fi 0 modes and re-
tain only the m � 0 term in Eq. (10). The expression (11)
for m � 0 ceases to be correct at frequencies larger thatp

Nȳ�R which correspond to plasmons with wavelength
of the order of the tube radius R, representing the obvious
ultraviolet cutoff for one-dimensional effects. Performing
the integral over the momenta in Eq. (10), we obtain

V �v� � 2

µ
e2 ln�min� d

R ,
p

N y

Rv ��
2pNȳ

∂1�2

Re

q
v 1

i
t

v3�2 , (12)

where ȳ �
P

n yn�N is the average Fermi velocity. The
two distinct regions of the frequency dependence here,
v ¿ 1�t and v ø 1�t, define two domains for the
energy-dependent correction to the TDOS. Substituting
V �v� into Eq. (3a), and assuming that ȳt . d�

p
N ,

we obtain

dn�e�
n0

� 2
1
p

s
2g
N

( q
2

et 1 lnlt, e , 1�t ,
ln�l�e�, e . 1�t ,

(13)

where g is defined in Eq. (2), and l � ȳ
p

N��R2d�1�3.
The first term of the low-energy asymptotic here is famil-
iar from the zero-bias anomaly theory of Altshuler and
Aronov [1], while the second term represents the omitted
in [1] high-frequency (v ¿ 1�t� contribution to the inte-
gral Eq. (3). The behavior of dn at e ¿ 1�t corresponds
to the ballistic electron motion.

The perturbative expressions diverge at the Fermi level
(e ! 0). To calculate the tunneling DOS to all orders in
the interaction constant at small e, we make use of the
246801-3
phase approximation for the fluctuating potential induced
by the electron-electron interaction [14]. The nonpertur-
bative expression for the density of states can be cast in
the form equivalent to the one derived in Ref. [21],

n�e, T�
n0

� T cosh
e

2T

Z `

2`
dt

coset
coshpTt

3 exp

ΩZ `

0
dvV �v�

cosh v

2T 2 cosvt

sinh v

2T

æ
.

(14)

In the region of validity of Eq. (14), the time integral can
be evaluated within the saddle-point approximation. As
the saddle point lies on the imaginary axis in the interval
0 # 2it , 1�2T , the denominator in Eq. (14) is always
a slowly varying function and does not contribute to the
saddle-point exponent.

We consider first the ballistic regime e .
p

e��t. It
allows us to reproduce the conventional Luttinger liquid
results, so for brevity we mention here only the limit
T ! 0. Evaluating the integrand of Eq. (14), we find

n�e� � n0

µ
e

l
p

e�t

∂a

; a �
1
p

s
2g

N
. (15)

In the diffusive regime e ,
p

e��t, the main contribu-
tion to the TDOS comes from the small frequencies, where
one can reduce Eq. (12) to V �v� �

p
e��pv3. Further-

more, if e ø 1�Nt and T ø g�pNt, the saddle-point
approximation is again applicable for the evaluation of the
time integral in Eq. (14). One can easily check that at the
saddle point the coshpTt function in Eq. (14) can be re-
placed by 1, and therefore the density of states satisfies the
scaling form

n�e, T � �
n0

�lt�a
exp

Ω
2

s
e�

T
F

µ
e

p
e�T

∂æ
. (16)

Here the function

F�x� �
Z `

0
dy

cosh y
2 2 coshyzs�x�

p
py3�2 sinh y

2
2 x�1

2 2 zs�x��

(17)

is determined by the value of the integrand in Eq. (14) at
the saddle point ts � izs�T . The dependence of zs on the
ratio e�

p
e�T � x is given by equation

x �
1

p
p

Z `

0

dy sinhzsy
p

y sinhy�2
. (18)

Numerical solution of this parameter-free equation and the
subsequent evaluation of the integral in Eq. (17) yields the
graph of scaling function F�x� plotted in Fig. 1 and its
asymptotics given in the figure caption. Note that the pre-
exponential factor in Eq. (16), which we omitted in Eq. (1)
for the sake of brevity, provides the proper matching of
the results (15) and (16) obtained in the energy domains
e ¿

p
e��t and e ø

p
e��t, respectively.

We derived our main results, Eqs. (16)–(18), assum-
ing that the Coulomb interaction is shielded at distances
246801-3
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�d. In the absence of shielding, the long-range nature of
the interaction potential leads to a stronger [22] than pre-
dicted by Eq. (15) suppression of the TDOS in the ballistic
regime, ln�n�e��n0� ~ 2�ln�e�e���3�2. At lower energies
(corresponding to the diffusive regime), the effect of the
long-range potential can be accounted for by replacing the
parameter e� of Eq. (2) with the logarithmic function of
energy and temperature,

e� ! e��e, T � � e0 ln
ȳ�R

max�e,
p

Te0 �
, e0 �

e2

4ȳNt
.

(19)

After the definition of e� is adjusted to reflect this replace-
ment, we can use Eqs. (16)–(18) again. In the limit of low
temperatures, T ø e2�e0, we find

n�e� ~ exp

µ
2

e0

e
ln

ȳ

eR

∂
. (20)

The suppression of the TDOS near the Fermi surface �e øp
Te0 � at finite temperatures is given by

n�T� ~ exp

∑
21.07

r
e0

T
ln1�2

µ
ȳ

R
p

Te0

∂∏
. (21)

The origin of the strong suppression of the TDOS, see
Eqs. (15), (16), (20), and (21), lies in the redistribution of
charge of the tunneling electron along the wire. This pro-
cess is impeded by the finite propagation time of plasmons
which enable the charge spreading. The requirement that
the wavelength of the relevant plasmons ȳ

p
N�e be shorter

that the length of the wire L imposes the lower energy limit
for the applicability of the present theory. For smaller ener-
gies, e , ȳ

p
N�L, the tunneling DOS of the wire depends

on the impedance of the leads attached to the segment [23].
To observe a sizable suppression of TDOS, the nanotube
must be sufficiently long, and therefore have high intrinsic
resistance. We find that in order to reach the strong dif-
fusive renormalization of TDOS anomaly (e,T ø e�) the
total resistance of the segment should be made larger than
�h�e2�

p
N�g. This condition on the overall segment length

does not invalidate the employed method which assumes
the diffusive motion of electrons. Indeed, the characteris-
tic frequencies of the plasmons involved are high enough
for the weak localization’s corrections to be ignored in the
calculation of TDOS. In order to avoid localization ef-
fects in the dc transport measurement, the two junctions
needed for the TDOS measurement should be attached to
the MWNT within a distance shorter than the localization
length from each other.

We presented above the derivation of TDOS only for the
case of a relatively long mean free path l, exceeding the
radius R of a MWNT, but our main result (1) is valid for
any relation between l and R. The only additional feature
appearing in the case l ø R, is the intermediate range of
energies studied in Ref. [16], where the TDOS behaves as
in a two-dimensional disordered conductor.
246801-4
In summary, we have obtained the tunneling density
of states in a disordered quasi-one-dimensional conductor.
Our results are nonperturbative in the electron-electron in-
teraction, and cover both the diffusive and ballistic regimes
of the electron motion. In contrast to the two-dimensional
case [21,24], the nonperturbative results (14) and (20) are
not given by a simple exponentiation of the first-order in-
teraction correction (13).
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