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A method is presented for using truncated, maximally localized Wannier functions to introduce sparsity
into the Slater determinant part of the trial wave function in quantum Monte Carlo calculations. When
combined with an efficient numerical evaluation of these localized orbitals, the dominant cost in the
calculation, namely, the evaluation of the Slater determinant, scales linearly with system size. This
technique is applied to accurate total energy calculation of hydrogenated silicon clusters and carbon
fullerenes containing 20–1000 valence electrons.
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Over the past two decades, considerable progress has
been made using quantum Monte Carlo (QMC) methods
to calculate the electronic structure of realistic materials
[1]. QMC has two major strengths, first a favorably “soft”
scaling, where the cost to calculate the energy per atom
scales as N3, where N is the number of electrons, and,
second, very high accuracy. Mean field methods such as
Hartree-Fock and density functional theory possess a simi-
lar N3 scaling, but may lack the desired level of accuracy.
On the other hand, quantum chemistry approaches such as
configuration interaction or coupled cluster may achieve a
high accuracy, but typically scale as N 5 7.

Despite a number of algorithmic developments [2–7],
QMC calculations for realistic systems have typically been
limited to a few tens of atoms. This limitation arises from
the N3 scaling and a larger prefactor than present in con-
ventional mean field calculations. The time, T , required to
evaluate the energy of a configuration of electrons in the
QMC algorithm can be decomposed as

T � aN 2 1 bN 3. (1)

The N 2 terms include evaluating the electron-electron and
electron-ion interactions and calculating the two-body Jas-
trow function. The N3 terms include a term with a small
prefactor for updating the value of the determinant after
moving all the electrons and a term with a large prefactor
for the calculation of the elements of the Slater determi-
nant associated with a given configuration of electronic
coordinates. The dominant cost of this Slater determinant
evaluation is the focus in this paper.

The cost of evaluating the Slater determinant arises from
the requirement to evaluate N orbitals for each of the N
electrons. Each orbital evaluation scales as the number of
basis functions. If the orbitals are expanded in an extended
basis such as plane waves, then the number of basis func-
tions is proportional to N [8] yielding the N3 scaling. If
the orbitals are expanded in a localized basis such as Gaus-
sians, then, in principle, the size of the basis is fixed beyond
a given system size and the Slater determinant evaluation
would scale as N2. However, for the system sizes studied
until now, the N 3 term has remained.
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In this Letter we present, for the first time to our
knowledge, QMC scalings that are practically linear
in the number of electrons over a wide range of sizes
(20–1000 valence electrons). We form QMC wave func-
tions with significant sparsity in the Slater determinant
by choosing single particle orbitals derived from the
maximally localized Wannier function construction [9]. A
combination of a real space truncation of these functions
and a representation in a numerical basis that is indepen-
dent of system size results in an improvement in scaling
from N3 to N . We demonstrate this linear scaling for large
hydrogenated silicon clusters and carbon fullerenes. Our
results show that it is now feasible for QMC to routinely
study systems containing up to 1000 electrons.

The introduction of sparsity into the Slater determinant
part of the wave function is similar in concept to the intro-
duction of sparsity into the overlap matrix of the Löwdin
states in linear scaling density functional approaches
[10,11]. However, the application of linear scaling to
the QMC formalism is not fraught with the same tech-
nical difficulties that have plagued linear scaling density
functional approaches. First, in QMC the Hamiltonian is
not constructed from a self-consistent charge density; it
is fixed. Therefore, when the orbitals are truncated, this
does not affect the conservation of charge and introduce
noise into the Hamiltonian. Second, the requirement
to invert the overlap matrix in linear scaling density
functional calculations imposes a large prefactor on these
methods, such that the crossover point with traditional N3

scaling techniques occurs around 1000 atoms. In our lin-
ear scaling QMC approach, the prefactor is the same as for
the traditional N3 implementations, and so the benefit is
immediate.

Our QMC calculations were performed using the
CASINO code [12], in which we adopt the standard
Slater-Jastrow trial wave function [1–5],

C � D"D# exp

"
NX
i

x�ri � 2

NX
i,j

u�rij�

#
, (2)

where D represents a Slater determinant, ri and rij cor-
respond to electron positions and separations, N is the
number of electrons, x is a one-body function, and u is a
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two-body correlation factor from Ref. [13]. The Slater de-
terminant is constructed from a set of single particle states,
Dij � fi�rj�. The states �fi� are obtained from calcula-
tions of the local density approximation (LDA) to density
functional theory using the JEEP code [14], which uses a
plane wave basis set with periodic boundary conditions.
We then use a conjugate gradient algorithm to search for
the unitary transformation of the LDA eigenstates which
yields Wannier functions with the maximum localization
[9,15]. For finite systems, the spread functional that is
minimized becomes equal to ���r 2 Rn�2�	1�2, where Rn

is the centroid of the maximally localized Wannier (MLW)
function. For example, in the hydrogenated silicon clus-
ters studied here, the MLW functions represent the Si—Si
and Si—H bonds, and the Rn are located close to the bond
centers. As the value of a determinant is unchanged by a
unitary transform, the QMC energy evaluated with a set of
MLW functions is numerically identical to that obtained
from the original LDA orbitals. The orbitals from which
the MLW functions are constructed can be occupied or
unoccupied states in an insulator, semiconductor, or metal
[16], and may correspond to ground or excited states.

Once the MLW functions have been constructed, there
are two important steps we implement to take advantage of
the localized nature of these functions. Each step reduces
the scaling by an order of N .

First, we define a cutoff radius, Rcut, beyond which the
MLW function is smoothly truncated to zero. This trunca-
tion ensures that each electron falls only within the cutoff
radius of a subset, M, of the MLW functions. For hy-
drogenated silicon clusters, this number is typically M 

35. Therefore, when the system size increases beyond M
atoms, the number of orbitals fi�r� required to be evalu-
ated for each electron is fixed at M and the cost of evalu-
ating the Slater determinant then scales as MN2.

To determine appropriate values for Rcut, we require the
truncated MLW function to reproduce at least 99.9% of
the norm of the original MLW function, and the contri-
bution to the kinetic energy from the Slater determinant
should have an error of less than 0.1%. In Fig. 1 we plot
the fixed node diffusion Monte Carlo (DMC) energy and
the norm of the truncated MLW function as a function of
Rcut. Since SiH4 has Td symmetry, all four MLW func-
tions are symmetry equivalent and the same value of Rcut

is applied to each MLW function. Figure 1 shows that the
DMC algorithm is stable over a wide range of values of
Rcut; i.e., where the value of the MLW functions is negli-
gible, truncation of these functions does not significantly
affect the nodal structure of the Slater determinant. The
values of the total energy agree within the 0.0003 hartree
statistical error bar for all calculations above Rcut. In all the
systems we have studied thus far, the DMC energy is well
converged with respect to Rcut for a value of Rcut chosen
to reproduce a norm of 0.998. Note, fixed node DMC cal-
culations with local pseudopotentials are variational with
respect to the true ground state. After truncating the MLW
246406-2
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FIG. 1. The dependence of the norm of the truncated MLW
function and the fixed node DMC energy on the cutoff radius
Rcut of the MLW functions. The untruncated DMC energy is
marked with the horizontal dashed line.

functions, the fixed node DMC energy is still variational
with respect to the true ground state, but could be higher
or lower than the original fixed node DMC energy. Fig-
ure 1 shows that severe truncation of the MLW functions
dramatically increases the fixed node DMC energy. We
interpret this increase as resulting from a truncation pro-
cess which changes the nodal surface so that the elec-
trons are more confined and, hence, have increased kinetic
energy [17].

A second step we take to improve the scaling is to re-
move the dependency of the number of basis functions on
the number of electrons. Again taking advantage of the
highly localized nature of the MLW functions, we choose
to evaluate the MLW functions using three-dimensional
cubic splines [18,19]. In so doing, each orbital, fi�r�,
is evaluated by a single spline interpolation and the cost
of evaluating the Slater determinant then scales as MN ,
i.e., a linear scaling algorithm. The number of spline grid
points in each dimension, Ngrid, was chosen to be consis-
tent with the plane wave cutoff in the original LDA cal-
culation, Ngrid � 2Rcut

p
Ecut�p, where Rcut is the cutoff

radius in atomic units and Ecut is the plane wave cutoff in
rydbergs. For the systems we have studied, Rcut is inde-
pendent of system size and, hence, the total memory re-
quired to store the spline grids for all orbitals grows only
linearly with system size. This is in contrast to conven-
tional implementations where the total storage grows as
N 2, due to the growth of the basis set with system size.

To demonstrate the improved scaling resulting from our
spline interpolated, truncated MLW functions, we plot
(Fig. 2) the CPU time required to move a single configu-
ration of electrons a single time step for a series of hy-
drogenated silicon clusters and carbon fullerenes. For the
silicon clusters, three different basis sets used to expand
the original LDA wave functions are compared: (a) the
truncated MLW functions interpolated using cubic splines,
(b) a 6-31G* quality Gaussian basis set, and (c) a plane
wave basis with 11 Ry energy cutoff. Figure 2 shows
that the computational cost of evaluating the LDA wave
246406-2
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FIG. 2. CPU time on a 667 MHz EV67 alpha processor to
move a configuration of electrons within DMC for SiH4, Si5H12,
Si35H36, Si87H76, Si123H100, Si211H140, C20, C36, C60, C80, and
C180.

functions in a plane wave basis scales as approximately
N3. The exact scaling is determined by the volume of the
supercell chosen for each system. The computational cost
of the Gaussian basis also scales as N3, but with a smaller
prefactor as the number of basis functions per atom is much
smaller. The calculations using the truncated MLW func-
tions demonstrate that the CPU time required to move a
single configuration of electrons scales approximately lin-
early with the number of electrons. The deviations from
linearity in the hydrogenated silicon cluster MLW curves
are mainly due to differing ratios of hydrogen to silicon
atoms; for the carbon fullerenes, they are due to differ-
ent strain in the clusters requiring slightly different cutoff
radii for the MLW functions. For the systems we com-
pared (SiH4 and Si5H12), the DMC energies for all three
basis sets agreed within 0.001 hartree per atom statistical
error bars.

Once the cost of evaluating the Slater determinant has
been reduced to linear scaling, it is interesting to ask how
large a system one can study before other parts of the al-
gorithm will begin to dominate and the linear scaling will
be lost. For the Si211H140 system (984 electrons), approxi-
mately 10% of the calculation involves the remaining parts
of the algorithm that scale as N2 and N3. With relatively
minor algorithmic improvements, the cost of these terms
could be dramatically reduced, extending the linear regime
to several thousand electrons. In particular, we envisage
(i) the electron-ion interaction could be rewritten with the
sum over ions precomputed so the local part scales linearly.
The nonlocal contribution already scales linearly due to
the cutoff in the range of the interaction. (ii) The electron-
electron interaction could be rewritten to scale linearly by
writing it as a sum of short- and long-ranged pieces [1,7],
or using Greengard’s multipole expansion [20]. (iii) To up-
date the Slater determinant, we adopt the N 3 scaling pro-
cedure based on storing the inverse of the transpose of the
matrix from Ref. [21]. Our introduction of sparsity into
246406-3
the Slater determinant allows us to significantly reduce the
prefactor for this N3 term. In larger systems where the
determinant is increasingly sparse, it should be possible
to reformulate the determinant update procedure to utilize
this sparsity and obtain a better size scaling.

Note, the discussion thus far involves the scaling of the
computational cost of moving a single configuration of
electrons. In practice, one calculates either (i) the total
energy of the system, or (ii) the energy per atom, with a
given statistical error. The statistical error, d, is related
to the number of uncorrelated moves, M, by d � s�

p
M,

where s2 is the intrinsic variance of the system. Typi-
cally, the value of s2 increases linearly with system size.
Therefore, to calculate the total energy with a fixed d, the
number of moves, M, must also increase linearly. When
multiplied by our linear increase in the cost of each move,
an N2 size scaling is obtained. For quantities per atom,
such as the binding energy of a bulk solid, s2 still in-
creases linearly with system size, but d is decreased by a
factor of N , and, hence, the number of required moves, M,
actually decreases linearly with system size. Therefore the
cost of calculating energies per atom is now independent
of system size.

To illustrate the range of systems that can now feasibly
be studied within QMC using truncated MLW functions
in the Slater determinant, we have calculated total ener-
gies of a series of carbon fullerenes. In Fig. 3 we plot the
binding energy per atom of C20, C36, C60, C80, and C180
fullerenes. Line (a) shows the binding energies calculated
using LDA; line (b) shows the binding energy calculated
within fixed node DMC. The LDA calculations were per-
formed at the G point of the Brillouin zone, using a cutoff
of 40 Ry. The same pseudopotentials were used in the
LDA and DMC calculations. Six points were used in the
QMC angular integration for the nonlocal pseudopotential.
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FIG. 3. Binding energy per atom (a) within LDA, and
(b) within DMC of carbon fullerenes. DMC statistical error
bars are smaller than the symbols. For comparison, we
have added 0.18 eV zero point energy to the bulk graphite
experimental binding energy [22].
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The computational cost of the DMC calculations to deter-
mine the binding energy per atom with a statistical error of
25 meV was 1500 CPU hours and, as predicted above, was
approximately independent of system size. Figure 3 shows
that the LDA binding energies smoothly approach the bulk
LDA binding energy for graphite as the size of the cluster
increases. Comparison with the DMC results shows that
the general trend within DMC is similar to LDA; however,
the LDA overestimates the binding energy for each of the
clusters.

In conclusion, we have demonstrated a method for using
truncated, maximally localized Wannier functions to intro-
duce sparsity into the Slater determinant part of the trial
wave function in QMC calculations. When combined with
an efficient evaluation of these localized orbitals, the cost
of evaluating the Slater determinant is reduced to scaling
linearly with system size for hydrogenated silicon clusters
and carbon fullerenes containing 20–1000 electrons. Uti-
lizing this method, it is possible to use QMC to study sys-
tem sizes that could previously be examined only within
less accurate methods. This development opens the possi-
bility of accurately studying a range of scientifically and
technologically important systems such as quantum dots,
nanodevices, biological molecules, and the materials sci-
ence of solids.
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