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We report on the transfer of coherence from a quantum-well electron-hole condensate to the light it
emits. As a function of density, the coherence of the electron-hole-pair system evolves from being full
for the low-density Bose-Einstein condensate to a chaotic behavior for a high-density BCS-like state.
This degree of coherence is transferred to the light emitted in a damped oscillatory way in the ultrafast
regime. Additionally, the photon field exhibits squeezing properties during the transfer time. Our results
suggest a new type of ultrafast experiments for detecting electron-hole-pair condensation.
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The generation of quantum coherence and entanglement
is of much interest for testing certain aspects of the non-
local predictions of quantum mechanics, as well as for ap-
plications in the emerging field of quantum information
processing. The recent achievement of Bose-Einstein con-
densation (BEC) in dilute atomic systems [1] has triggered
a great interest in looking for such quantum correlations
with massive particles [2]. Furthermore, the manipula-
tion of the interaction of light with massive particles is
crucial for controlling processes which transfer coherence
and/or entanglement between radiation and matter. A con-
densed matter system being a candidate for this goal is an
electron-hole-pair condensate [3,4]. Several groups have
directed their experimental efforts to produce this collec-
tive state in semiconductors [5–7]. Recently, long life-
time indirect excitons, in both real and k spaces, have
been proposed as the most robust entities towards con-
densation [8–10]. Hence, it is natural to inquire which
signatures may be expected to be transferred from the
electron-hole-pair condensate to emitted photons. The
transfer of coherence is an ultrafast process that can be ana-
lyzed by means of coherent control techniques as those re-
cently applied to semiconductor nanostructures. This work
is the first step in this direction.

Coherence of a quantum system is associated with the
observation of interference effects which can be described
by first- and higher-order correlation functions as stated by
Glauber [11]. Most of the studies of the light emitted from
an electron-hole condensate that have been proposed to
date rely on the lowest-order fluctuations in photon count-
ing experiments, i.e., intensity measurements instead of the
correlation functions [12,13]. It has been previously shown
that at low density the emitted light should be in a coherent
state [14]. However, we demonstrate here that this perfect
coherence transfer is possible only asymptotically. The
proper way to quantify both the amount and dynamics of
transferred coherence to the radiation field is by consider-
ing the correlations between photons as a function of time
[15]. Recent proposals [16] may bring this kind of photon
6403-1 0031-9007�01�87(24)�246403(4)$15.00
counting experiment within reach. The main aim of this
work is to explore time-dependent higher-order coherence
properties of photons emitted from a collective electron-
hole pair state in an ultrafast time scale. Our results show
that full coherence transfer takes a time ranging from hun-
dred of femtoseconds to a few picoseconds. During this
transfer time squeezing of photons may be achieved.

Since we are interested in the quantum effects we re-
strict ourselves to study ground-state properties (zero tem-
perature) and let the pair density change. We consider
indirect semiconductor quantum wells where electrons and
holes are spatially separated by an interlayer distance d.
The confinement in the z direction is sufficiently strong
so that we ignore excitations in that direction. The Ham-
iltonian of the system includes the kinetic energy and all
the interactions among electrons and holes, the free (quan-
tized) electromagnetic field, and the interaction between
the radiation and the electron-hole system. The system’s
initial state is assumed to be a product of an empty ra-
diation field state and a condensate electron-hole state,
j0photons� 3

Q
�k�u�k 1 y�ke

y
�k
h
y

2�k
� j0� with �k being a two-

dimensional wave number vector, u�k and y�k satisfy the

normalization condition u2
�k

1 y
2
�k

� 1. e
y
�k

�hy
�k
� is the elec-

tron (hole) creation operator and j0� denotes the semicon-
ductor ground state. The variational BCS-like function has
enjoyed considerable success in the description of station-
ary properties of electron-hole systems [17]. It captures
the essential electron-hole pairing correlations in the low
as well as high pair density, n, limits, although it does
not describe possible collective modes in the condensate.
We also assume that in the ultrafast coherence transfer pe-
riod just a few bunches of photons are emitted, so that n
does not change significantly and thus we take it as a con-
stant. The time-dependent optical coherence is obtained
via photon operators determined by pairs evolving under
the action of the electron-hole Hamiltonian in the free Bo-
goliubov quasiparticles approximation [18] (quantum fluc-
tuation terms are neglected). These basic assumptions are
indeed satisfied for transfer times below a few picoseconds
© 2001 The American Physical Society 246403-1
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and more interestingly they also yield to the correct sta-
tionary limit. Coefficients u�k and y�k are found from the
self-consistent solution of the BCS gap equation for given
chemical potential m and n. In what follows, energy is
measured in 2D Rydbergs R0, length in 2D Bohr radius
a0, and time in units of t0 � R

21
0 .

Since an electron-hole condensate corresponds to
a coherent macroscopic polarization of the electronic
states, we start by considering the polarization correlation
functions (PCFs). The first- and second-order PCFs are
defined as G
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�k h �q2�ke�k is the polarization field. Because of the

long wavelength of emitted photons, only �q � �0
modes are important. PCFs in the BCS state are better
expressed in terms of the so-called normal and anomalous
(or pair) Green’s functions [15], defined by G�t1 2 t2� �P
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be written as G
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should be noted that the polarization field remains always
in a stationary state in such a way that its correlation and
coherence functions are dependent only on t � t2 2 t1
but not on T � �t1 1 t2��2. The first-order polarization
coherence function is expressed as
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where E�k is the excitation energy of Bogoliubov quasipar-
ticles. Similarly, the second-order polarization coherence
function is

g
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where jF �0�j2 � �
P

�k u�ky�k�2. It must be stressed that
the second-order coherence function for the polarization,
g

�2�
P �0�, equals 1 for a coherent state, whereas it is 2 for a

chaotic field [19].
Our results for the second-order polarization field co-

herence, for d � 0 and different densities, are shown in
Fig. 1. Clearly, a full coherent behavior, in the Glauber
sense, appears in the low-density limit. In this case y

2
k ø

1, yielding to jg
�1�
P �t�j � jg

�2�
P �t�j � 1, as expected for

an ideal electron-hole BEC. By contrast, as the density
increases g

�2�
P �0� becomes greater than 1, going up to a

maximum value of 2. As a function of t, g
�2�
P decreases

from its initial value in an oscillatory way, with a period
determined by E�k�0. At high densities g

�1�
P �t� decays to

zero and g
�2�
P �t� decays to one in a faster oscillating way

with a frequency approaching that of the system’s Fermi
energy. In the very-high-density limit, where y�k � 1 for
k smaller than the Fermi wave vector �kF and 0 other-
wise, the anomalous term vanishes yielding to g

�1�
P �t� �
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FIG. 1. Second-order polarization field coherence as a function
of t for d � 0 and different densities.
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�1�
P �t�j2 with

eF � k2
F�2. Clearly, g

�2�
P �0� � 2, corresponding to a non-

interacting fermion field, and it decays, as a function of t,
in an overdamped way.

Next we discuss the coherence properties of the emitted
light in order to study the transfer of coherence from
the condensate. First- and second-order correlation func-
tions are G
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v0 is the frequency at which the emitted light is filtered,
Eg is the energy gap, and M0 is the coupling between the

photons and the electron-hole pairs. Similarly, G
�2�
�q �t1; t2�

is closely related to G
�2�
P �t1; t2�. From these relations

between polarization and radiation correlation functions
the coherence transfer from the former to the latter can
be obtained. The first-order correlation function can be
written as G�1��T , t� � N�T , t� 1 A�T , t�, where the
normal and the anomalous dimensionless contributions
are given by
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respectively, with v � v0 2 Eg 2 m. The first- and
second-order coherence functions are then
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respectively. As for the polarization, the anomalous
contribution determines whether or not the light is second-
order coherent. The steady-state expressions can be
quickly obtained by letting T ¿ t which leads to
G�1��t1; t1� � G�1��t2; t2� � G�1��T , t � 0�.

First- and second-order coherence do not depend on the
efficiency of the detector used in photon counting experi-
ments nor on the coupling M0. Moreover, the amount of
coherence depends only on the system’s density. Turning
this around, we can use the coherence information to de-
termine the electron-hole density.

One expects the emitted light to be fully coherent in
the low-density limit whereas it should be chaotic in the
high-density limit as emitted by an uncorrelated source.
We indeed show that in both cases the asymptotic ex-
act solutions are recovered. Obviously, from Eq. (5) it
can be drawn that g�1��T , 0� � 1 for any frequency and/or
electron-hole pair density, in agreement with the standard
result according to which any single mode radiation field is
first-order coherent [19]. Therefore, we restrict ourselves
to second-order coherence properties. In the low-density
limit, yk is essentially the hydrogenic ground state wave
function, yk �

p
n f1s�k� � �2

p
2pn a0���1 1 k2a2

0�3�2,
m � 2R0, and the normal contribution vanishes. The
second-order coherence function becomes jg�2��T, t�j �
1, indicating the fact that in a steady-state situation the
light emitted from an electron-hole pair condensate (BEC
state) is second-order coherent, in full agreement with pre-
vious results for excitons [14]. In the very-high-density
limit, where m � k2

F , the anomalous part goes to zero.
The second-order coherence is now given by g�2��T , t� �
1 1 jg�1��T , t�j2, so that g�2��T , 0� � 2 as it corresponds
to chaotic radiation [20].

Now we turn to the more general case of arbitrary densi-
ties. Figure 2 depicts g�2��T , 0� at v0 � Eg 1 m, for dif-
ferent densities. Clearly, two very different behaviors are
observed depending on the time scale considered. In the
short time regime, the emitted radiation is partially coher-
ent since g�2� . 1; this behavior is reinforced as the den-
sity increases. For T ! 0, g�2��T , 0� approaches g

�2�
P �0�,

which depends only on the system’s density and charac-
terizes the fluctuations of the macroscopic collective polar-
ization state. In this way emitted photons could bring well
differentiated information on the system’s ground state.

Second-order coherence describes also the tendency of
photons to arrive in pairs �g�2��T , 0� . 1� or rather to be
spaced out in time �g�2��T , 0� , 1� [19]. Our results show
that at a short time scale the first condition is satisfied,
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FIG. 2. Second-order coherence as a function of T for light
emitted at v0 2 Eg � m and d � 0 for different densities. In-
sets: (a) g�2��T , 0� at v0 2 Eg � 22.5m; (b) g�2��T , 0� for two
different d values, and (c) g�2��0, 0� for na2

0 � 1.3 3 1022 as a
function of the electron-hole layer separation distance.

producing photon bunching. In a long time scale, the
photon bunching effect disappears and the radiation field
becomes asymptotically coherent, i.e., g�2��T , 0� ! 1, for
any finite density. This is due to the fact that the nor-
mal contribution, N�T , 0�, saturates to a constant value
while the anomalous contribution, A�T , 0�, grows as T2

[20]. It must be stressed that the light emitted is coher-
ent even though the polarization field is incoherent in the
Glauber sense. The time to reach the steady-state value
is longer as the density increases. For systems of interest,
(i) GaAs, R0 � 16 meV, a0 � 62.5 Å, and for a density
3 3 1010 cm22, the stationary regime is reached roughly
after 1 ps; (ii) CdS, R0 � 120 meV, a0 � 12.75 Å, and
for a density 7 3 1011 cm22 a steady-state situation is
reached for a time on the order of 100 fs. In both cases,
na2

0 � 1.3 3 1022.
These results show how the coherence of the photon field

at v0 2 Eg � m evolves from a partially coherent behav-
ior, dominated by the fermionic character of the system,
towards a full coherent behavior, reflecting the system’s
macroscopic quantum properties. By contrast, light ob-
served at frequencies such that v0 2 Eg , m evolves as
a function of time from a partially coherent character to-
wards a full chaotic behavior, i.e., g�2� ! 2 (Fig. 2 inset
(a); note that for plotted densities m , 0). Clearly, a suc-
cessful coherence transfer is possible only for the former
case but not for the latter one.

Interlayer separation effects are shown in insets (b) and
(c) of Fig. 2. For increasing d the incoherence of light in
the ultrafast regime becomes more evident and the evolu-
tion of g�2��T , 0� towards its coherent value is slower. For
a fixed density, g�2��T , 0� when T � 0, as a function of d,
saturates to a final value of 2, indicating an enhancement
of the chaotic behavior of light.
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FIG. 3. Time evolution of the photon field amplitude variance
for radiation emitted at v0 � Eg 1 m and M0 � 0.1R0.

In order to further characterize the statistical properties
of the emitted radiation, we calculate the variance of
the photon field amplitudes X̂1 �

1
2 	C�T � 1 Cy�T �


and X̂2 �
1
2i 	C�T � 2 Cy�T�
. For radiation emitted by

the condensate, these variances are ��DX̂1,2�2� �
1
4 1

1
2 N�T , 0� 6

1
2 Re��DC�T�2�� where, for v0 � Eg 1 m,

�DC�T�2� � 22M2
oe2i2mT

P
�k u2

ky
2
k

sin2�EkT�2�
E2

k
. In contrast

to g�1� and g�2�, these variances depend on the coupling
M0. Clearly, squeezed light is possible only at moderate
low densities, where the normal contribution is negligible
but ukyk is still important. This nonlinear effect is due
to interactions between electron-hole pairs, in agreement
with results obtained by a simple interacting boson model
[21]. Figure 3 displays the deviation of ��DX̂1�2� from
1�4 (the coherent state value) for different densities. The
amount of squeezing, as measured by the most negative
value for each curve in Fig. 3, is a nonmonotonic function
of the pairs density. There is a maximum squeezing in
one of the quadratures every time mT � p.

In summary, we have shown how coherence transfer,
from an electron-hole condensate to the photons it emits,
proceeds as a function of time. The condensate itself
presents different degrees of Glauber coherence depending
on its density and the electron-hole layer separation. A full
246403-4
coherence transfer is restricted to light with a frequency
given by v0 � Eg 1 m and for times greater than a few
hundred femtoseconds. We also predict light squeezing
from a moderate low-density electron-hole-pair system.
These coherence transfer properties should help experi-
mentalists searching for evidences of electron-hole-pair
condensation in quantum wells.
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