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Universal Scaling Laws of Diffusion in a Binary Fluid Mixture
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A new universal scaling law relating the self-diffusivities of a binary fluid mixture and the excess
entropies of its components is derived using mode coupling theory, reproducing the empirical scaling
laws of Dzugutov [Nature (London) 381, 137 (1996)] and Hoyt et al. [Phys. Rev. Lett. 85, 594 (2000)]
as special cases. The derived scaling laws are tested through numerical calculations for binary Lennard-
Jones fluid mixtures for a wide range of physical parameters, and a very good correlation is observed.
We have also arrived at a new universal scaling relationship between the cross-diffusivity and entropy
for the first time.
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Diffusion phenomena in fluids and fluid mixtures [1]
are of immense importance in various disciplines and have
been investigated from time to time using the latest probes
or tools available at each stage. The earlier theoretical ap-
proaches that were developed mainly along the lines of
kinetic theory [2,3] have been shown to predict results that
compare reasonably well with the experimental results [3]
for hard spherelike colloidal suspensions. For a general
fluid, however, a more successful and recent theoretical
tool is the mode coupling theory (MCT) [4,5] which pro-
vides expressions for diffusivity in terms of various static
pair correlation functions as well as collective dynamical
quantities, which may be often difficult to calculate for
complex fluids in general. Thus, it is worthwhile to in-
vestigate if these expressions can be further simplified or
approximated so that the properties entering into the final
scheme can be obtained not only through theoretical routes
but are accessible from experimental results as well. The
simplest such quantity is the static structure factor s�k� or
the radial distribution function (RDF) g�r�. The objective
of this paper is to investigate the possibility of expressing
the self- and cross-diffusivities of a binary fluid mixture in
terms of these static quantities alone.

This paper is motivated by two recent important in-
vestigations [6,7] in this direction. Thus, Dzugutov [6]
proposed a universal scaling law relating the dimensionless
scaled diffusion constant D� of a pure (one-component)
fluid to its excess entropy S as D� � A exp�S�, where A
is a parameter equal to 0.049 and the excess entropy S is
defined as S � 2�1�2�r

R
dr �g�r� lng�r� 2 �g�r� 2 1��

with r representing the bulk fluid density. Here D� �
D��Gs2�, where s is the hard core diameter, D is the
self-diffusion constant, and G is the collisional fre-
quency which is defined in Enskog theory as G �
4s2g�s�r�pkBT�m�1�2 with g�s� denoting the RDF
evaluated at the contact point s, m is the mass of a fluid
particle, and kB and T represent the Boltzmann constant
and absolute temperature, respectively.

An important aspect of this scaling law is that it connects
the dynamical quantity D� with an equilibrium property
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g�r� and it is universal in nature irrespective of the type of
interparticle interaction. It is thus quite important to ex-
tend it to the case of binary mixtures, the first attempt at
which was made by Dzugutov [6] by replacing the various
quantities appearing in the relation by those of the indi-
vidual components in the mixture with no inclusion of any
cross-RDF. Recently Hoyt et al. [7] proposed, for a bi-
nary mixture of two components a and b, a new scaling
law given by

D� �
µ

Da

xa

∂xa
µ

Db

xb

∂xb

� A exp�S� , (1)

where Da and Db represent the self-diffusion constants of
the respective components with mole fractions xa and xb ,
and the component scaling factor xm is defined as

xm � 4�pkBT�1�2
X
n

s4
mnrngmn�smn�

µ
mm 1 mn

2mmmn

∂1�2

(2)

for m � a or b. Here ra and rb denote the individ-
ual components of the total density r�� ra 1 rb�, ma

and mb are the respective particle masses, saa and sbb

are the hard core diameters (or positions of the first peaks
in RDF for continuous potentials) with smn � �smm 1

snn��2, and the total excess entropy is given by S �
xaSa 1 xbSb, where Sm is the partial molar entropy for
the mth component as given by

Sm � 2
1
2

X
n

rn

Z
dr

3 �gmn�r� lngmn�r� 2 �gmn�r� 2 1�� . (3)

The scaling law of Hoyt et al. [7] clearly involves the
cross-RDF gab�r� in addition to the self-RDF’s gaa�r�
and gbb�r� in the scale factors xa and xb as well as
in the excess partial molar entropies Sa and Sb. The
universal scaling laws proposed by Dzugutov [6] as well
as Hoyt et al. [7] are rather simple and are found to work
well for most of the one- and two-component systems,
respectively. However, one of the major drawbacks is that
© 2001 The American Physical Society 245901-1
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both of the scaling laws are only empirical and, moreover,
for a binary mixture, the scaling law relates only D� which
is a particular combination of the individual diffusivities
Da and Db as given in Eq. (1) and does not provide any
relation or prescription for the individual diffusivities. For
mixtures, there is also a cross-diffusivity which has so far
remained outside the scope of these scaling laws. In this
paper, we provide a satisfactory derivation of the scaling
laws in a binary mixture for the individual component
self-diffusivities as well as the cross-diffusivity.

For this purpose, we start with the expressions for dif-
fusivity within the framework of MCT which we recently
proposed [8] for a binary mixture and assume that the dif-
fusion is controlled by the structural relaxation of the fluid
particles, and hence the total friction acting on a tagged
particle of the mth component can be split into the bi-
nary part jB

m and the density fluctuation contribution j
rr
m ,

thereby leading to the expression of the corresponding dif-
fusion constant as Dm � kBT��jB

m 1 j
rr
m �. In order to

obtain an explicit expression for j
rr
m , we adopt the con-

cepts of MCT and assume that only the collective den-
sity mode couples to the motion of the tagged particle and
hence the relevant decay channels are provided by the bi-
linear modes of the form n�

m�k�n�k�, where nm�k� and
n�k�, respectively, represent the tagged particle density
and the collective density in Fourier space. The standard
MCT procedure [8] then leads to the expression

jrr
m �

µ
kBT

24p3r

∂ Z `

0
dt

Z
dk

3 k2 � rahma�k� 1 rbhmb �k��2

�s�k��2 Gm�k, t�G�k, t� ,

(4)

where hmn�k� is the total correlation in Fourier space and
s�k� � saa�k� 1 sbb�k� 1 2sab�k� with smn�k� denot-
ing the partial static structure factors, whereas G�k, t�
and Gm�k, t� represent, respectively, the collective- and
self-dynamic structure factors.

Because of the slow dynamics of the diffusive process of
the tagged particle, one can assume [4] in Eq. (4) the result
Gm�k, t� 	 Gm�k, 0� � 1. Although a formal expression
for G�k, t� can be obtained by using the projection opera-
tor formalism developed by Zwanzig [9], it is difficult to
express it in simple analytical form. Therefore, we em-
ploy the hydrodynamic limit and Markovian approxima-
tion and express it as G�k, t� � s�k� exp�2Dmk2t�s�k��,
neglecting the cross-velocity contribution and also assum-
ing Da 	 Db for simplification. Using these approxima-
tions in Eq. (4), evaluating the time integral and after some
rearrangement, we obtain the simple expression for Dm

given by

Dm �
kBT

jB
m

�1 2 Am� 	
kBT

jB
m

exp�2Am� , (5)

where the exponential approximation used here is valid if
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the quantity Am expressed as

Am �
1

24p3

Z
dk � rah2

ma�k� 1 rbh2
mb�k�

2 rxaxb�hab�k� 2 hmm�k��2�
(6)

is small, as is the case if the density of the fluid mixture is
not very high. Noting that the last term on the right-hand
side of Eq. (6) is identically zero for an isotopic mixture
for which saa � sbb and is small for size ratio close to
unity, one can neglect this term in Eq. (6) in comparison
to the first two terms and reexpress the k-space integral as
a coordinate-space integral involving gmn�r�, to obtain

Am �
1
3

X
n

rn

Z
dr �gmn�r� 2 1�2. (7)

Now, based on the inequality �g�r� 2 1�2 $ �g�r� 3

lng�r� 2 �g�r� 2 1�� which follows from �g�r� 2 1� $

lng�r�, we replace �gmn�r� 2 1�2 by �gmn�r� lngmn�r� 2

�gmn�r� 2 1� � in Eq. (7) and express it as an equality
approximation by introducing a single multiplicative con-
stant b which is clearly greater than unity. This leads to
the result

Am �
b

3

∑X
n

rn

Z
dr �gmn�r� lngmn�r� 2 �gmn�r� 2 1��

∏

(8)

which clearly equals the entropy term Sm for the mth com-
ponent, as defined in Eq. (3), if the value of the constant
is chosen as b � �3�2� which is intermediate between the
limiting values b � 2 and 1 corresponding to the limits
g�r� � 1 and 0, respectively. Using Eqs. (5), (8), and (3),
the scaled diffusivity D�

m�� Dm�xm� is thus given by

D�
m �

kBT
xmjB

m

exp�Sm� . (9)

Using now Eq. (2) for the scale factor xm and the Enskog
theory expression [10] for jB

m, the temperature and mass
dependence of the prefactor can be shown to almost cancel
out. This prompts us to replace the prefactor by a constant,
at least for the intermediate density range and size ratio
not very different from unity, and write the approximate
version of Eq. (9) as

D�
m � A exp�Sm� , (10)

where the prefactor A has been chosen to be the same as
that proposed by Dzugutov [6], so that, on specializing to a
pure fluid, Eq. (10) becomes identical to the scaling law of
Dzugutov. This provides a derivation of a universal scaling
law for the self-diffusivities using the MCT of diffusion in
a binary mixture. The scaling law of Eq. (10) clearly satis-
fies D� � �D�

a�xa �D�
b�xb � A exp�xaSa 1 xbSb�, which

is the scaling law of Hoyt et al. [7] as given by Eq. (1).
The newly derived Eq. (10) thus satisfies both Dzugutov
[6] and Hoyt et al. [7] scaling laws as the appropriate lim-
iting special cases.
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Another important transport coefficient in a binary fluid
mixture is the cross-diffusivity Dd, which has been studied
[8], using MCT for the first time, only recently. It is worth-
while to investigate if a universal scaling law exists for the
cross-diffusivity since no such scaling law seems to have
been considered earlier for this quantity. For this purpose,
we again start with the MCT expression proposed for the
cross-diffusivity but introduce a simplification based on the
experience of numerical calculation [8] which has shown
that the cross-correlation contribution to Dd from particles
of the same component is smaller than that from dissimilar
particles. Thus, retaining cross correlation only from the
dissimilar particles, and approximating their distinct dy-
namic structure factor by the initial value sab�k�, one can
express Dd as

Dd �
�DaDb�1�2

24p3r

Z
dk � ra haa�k� 1 rbhba�k��

3 � rbhbb�k� 1 rahab�k��sab�k� , (11)

where the other approximations used for simplifying the
self-diffusivity have also been employed. Owing to the
sharpness of the peak of the integrand at k � km, we re-
place sab�k� appearing in Eq. (11) by its peak value, i.e.,
sab�k� 	 sab�km�. Applying now Holder’s inequality
and using the same approximations as those involved in
obtaining Eq. (8) from Eq. (6) as well as Da 	 Db , the
scaled cross-diffusivity D�

d � Dd�D0
ab is obtained as

D�
d � bdsab�km� �SaSb�1�2, (12)

where D0
ab � xbDa 1 xaDb and the constant bd is in-

troduced to account for the approximation in replacing the
inequality by an equality.

In order to obtain insight into the applicability of the
scaling laws derived here, we consider the Lennard-Jones
(LJ) fluid mixtures for a wide range of values of the physi-
cal parameters. The RDF’s gmn�r� �m, n � a, b� for these
systems have been calculated through integral equation
theory by numerically solving the Orstein-Zernike equa-
tion with hypernetted chain approximation along with the
bridge function proposed by Duh and Henderson [11]. The
entropy Sm has been evaluated using the calculated RDF
in Eq. (3) and using numerical integration. In Fig. 1, we
have plotted the scaled self-diffusivities D�

m correspond-
ing to simulation [10,12–16] results against the calculated
entropies Sm for both components of LJ fluid mixtures for
different values of the physical parameters such as the den-
sity, interaction strength, temperature, composition, and
size ratio. Excellent agreement of these plots with the
line drawn to represent Eq. (10) is clearly evident, demon-
strating the accuracy of the new scaling law proposed for
the component self-diffusivities. In order to test the scal-
ing law proposed by Dzugutov [6] for a mixture that can
be obtained from Eq. (10) by dropping the cross-terms in
the expressions for the scale factor as well as the entropy
given by Eqs. (2) and (3), respectively, we have plotted,
as an inset of Fig. 1, D�

m calculated by this prescription
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FIG. 1. Plot of the scaled self-diffusivity D�
m vs excess partial

molar entropy Sm of the two components �m � a, b� in a binary
LJ fluid mixture. The solid line (—) represents the present
scaling law of Eq. (10). The simulation results which are taken
from Refs. [10,12–16] are shown by filled circles ��� for Da

and open circles ��� for Db . The inset shows the plot for results
corresponding to Dzugutov scaling for which the scale factor
and entropy correspond to Eqs. (2) and (3), respectively, without
inclusion of the cross-terms. The solid line (—) represents the
Dzugutov [6] scaling law results. The key for the simulation
results is the same as above.

along with the simulation results against entropy which is
also calculated using the Dzugutov prescription, i.e., by
neglecting the cross terms. It is observed that, in this case,
the agreement is poorer which establishes the importance
of the cross terms in the entropy [as defined in Eq. (3)]
and hence also of the present scaling law. Although Hoyt
et al. [7] were the first to include gab�r� in their scal-
ing law shown in Eq. (1), they studied only the average
quantity D� rather than the individual diffusivities D�

m, and
also their study was restricted only to liquid metals. We
have, therefore, calculated here the quantity D� for the LJ
mixture and plotted the results along with the simulation
[10,12–16] as well as MCT results [8] in Fig. 2, and an
excellent agreement is observed. It may be noted that this
is only an average quantity and does not reflect the be-
havior of the individual components, while the scaling law
proposed in Eq. (10) predicts the component diffusivities
and hence is more general. We have also plotted in Fig. 3
the scaled cross-diffusivity D�

d � Dd�D0
ab corresponding

to simulation [17] as well as MCT results [8] vs the scaled
entropy term S�

d � sab�km� �SaSb�1�2, and a linear cor-
relation as suggested in Eq. (12) is observed although the
intercept shown by the best fit is different.

The major new aspects of this paper may be highlighted
as follows. This is the first time the universal scaling laws
for diffusivity have been derived from a rigorous theory
such as MCT, not only for a pure fluid but also for a bi-
nary fluid mixture for which new scaling laws have been
obtained for the self-diffusivities of the individual compo-
nents, which also conform to the earlier empirically pro-
posed scaling laws of both Dzugutov [6] and Hoyt et al. [7]
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FIG. 2. Plot of the scaled combined diffusivity D� vs total ex-
cess entropy S�� xaSa 1 xbSb � for a binary LJ fluid mixture.
The simulation results, which are taken from Refs. [10,12–16],
are shown by filled circles ��� and the MCT results [8] are
shown by open circles ���. The solid line (—) corresponds to
the Hoyt et al. [7] scaling law [Eq. (1)] as well as the present
scaling law [Eq. (10)].

for the special cases of pure fluids and a single combined
diffusivity parameter of mixtures, respectively. The other
important quantity is the cross-diffusivity [8,17]. An ac-
curate evaluation of this quantity is more difficult than the
self-diffusion constant D�

m. We have obtained here for
the first time a simple linear relation between the cross-
diffusivity and the entropy [Eq. (12)]. Although the slope

FIG. 3. Plot of the scaled cross-diffusivity D�
d vs the scaled

entropy parameter S�
d�� sab�km� �SaSb�1�2� for a binary LJ fluid

mixture. The simulation results, which are taken from Ref. [17],
are shown by filled circles ��� and the MCT results [8] are
shown by open circles ���. The solid line (—) corresponds to
the best linear fit of the simulation results.
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or intercept of the line is not predicted by the derivation
here, the linear dependence on the scaled entropy is pre-
dicted and found to provide a quite accurate representation
of the results for the cross-diffusivity. To summarize, this
investigation has provided insight by establishing a link be-
tween the recently proposed MCT of diffusion in a binary
fluid mixture and the universal scaling laws, and we be-
lieve it will inspire further studies on this important topic.
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