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It is shown that in the vicinity of a magnetic island, the symmetry of the equilibrium magnetic-field
strength B is broken due to the finite width of the islands. The magnitude of this broken symmetry is
of the order of �dB�B�1�2, where dB is the perturbed magnetic-field strength. This leads to enhanced
plasma transport. The symmetry-breaking induced-transport flux in tokamaks with islands is calculated.
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Magnetic islands are ubiquitous in magnetically con-
fined plasmas either produced in laboratories or exist in
nature. They play an important role in fusion plasmas by
their effect on plasma confinement. For example, a low
m neoclassical magnetic island limits plasma beta, which
is the ratio of plasma pressure to magnetic field pressure,
in fusion grade plasmas [1–3]. Here m is the poloidal
mode number. When a magnetic island is present, the
equilibrium symmetry is broken. The broken symmetry
in the magnetic field strength B is usually ignored, how-
ever. This is because the perturbed magnetic field strength
dB of magnetic islands is small when compared with the
equilibrium value of B. The symmetry breaking effect on
B is thought to be of the order of �dB�B�2 ø 1. How-
ever, if B is not spatially uniform, e.g., B � B�x�, with
x the radial variable, the symmetry breaking effect in B
is of the order of B0�x0� �Dx��B. Here, x0 is the posi-
tion of the singular layer, prime denotes d�dx, and Dx
is the width of the island. Because Dx is proportional to
�dB�B�1�2, the symmetry-breaking effect becomes much
more important than has been perceived previously. This
broken symmetry in B tends to enhance plasma transport.
Here, we calculate symmetry-breaking induced-transport
flux in tokamaks with an island to illustrate this effect.

The magnetic field B in a tokamak is modified by the
presence of a magnetic island to become B � I=z 1

=z 3 =�c 1 dc�, where z is the toroidal angle, I �
RBt , Bt is the toroidal magnetic strength, c is the unper-
turbed equilibrium poloidal flux function, and dc �
c̃ cosma is the perturbed poloidal flux function due to
the presence of the island, with c̃ the amplitude of the
perturbed poloidal flux, a � u 2 z�qs the helical angle,
u the poloidal angle, and qs the safety factor at the radius
of the O point of the island. The island winds around the
torus helically. To see how a magnetic island modifies
B on a perturbed magnetic surface, we first consider the
variation of B on an equilibrium magnetic surface, which
is, in a large aspect ratio tokamak,

B�B0 � 1 2 ´ cosu ,

where B0 is B on the magnetic axis, i.e., the origin of the
open circles in Fig. 1, ´ � r�R ø 1 is the inverse as-
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pect ratio, r is the local minor radius relative to the mag-
netic axis, and R is the major radius. Note that the reason
that B has a cosu dependence on a magnetic surface,
which is approximately a circle in this simple model, is
because the plasma column has a finite radius, as can be
seen from Fig. 1. When an island is present, the mag-
netic surface is distorted as shown in the lower shaded
ellipse in Fig. 1. In the vicinity of an island, around the
shaded region in Fig. 1, the magnetic surface is perturbed
because r � rs 1 �r 2 rs� with rs the mode rational sur-
face where the singular layer resides, or the center of the
shaded region in Fig. 1, i.e., the O point of the island,
and �r 2 rs� is deviation of the magnetic surface from the
circle which is r 2 rs � 6rw�C̄ 1 cosma�1�2. Here the

island width rw �
q

2q2
s c̃�q0

sB0rs, C̄ is the normalized

helical flux function C̄ � 2C�c̃, C � c 2 x�q is the
helical flux function, x is the toroidal flux function, q is
the safety factor, and q0

s � dq�dr at r � rs [4]. Thus,
in the vicinity of a magnetic island, the magnetic field

FIG. 1. The concentric circles denote equilibrium magnetic
surfaces. The lower shaded ellipse represents the distorted mag-
netic surface due to an m � 2 island which is represented by
the shaded region. The solid curve denotes the 1�R dependence
of B.
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strength B has the following form:

B�B0 � 1 2

∑
rs

R
6

rw

R
�C̄ 1 cosma�1�2

∏
cosu . (1)

The perturbed radial component of the magnetic field is
of the order of dB � mc̃��Rr�. This modification on B
is of the order of �dB�2�B2, while the modification due to
the distortion of the magnetic surface calculated in Eq. (1)
is of the order of �Lsqs�mR�1�2�dB�B�1�2 . �dB�2�B2.
Here, Ls � q��dq�dr�. Thus, we neglect �dB�2�B2 modi-
fication in Eq. (1). From Eq. (1), it is clear that toroidal
symmetry in B is broken in tokamaks by the perturbed
magnetic surfaces due to the existence of the island. Even
though we demonstrate the symmetry breaking in a toka-
mak with an island, it is obvious the principle is applicable
to other plasma configurations with islands as well. Note
that an island tends to increase the magnetic equilibrium
dimension by 1. For example, tokamak equilibrium is two
dimensional, i.e., B is a function of �r, u�. A magnetic
island introduces one extra dimension in the perturbed
equilibrium.

The symmetry breaking is especially significant for low
m islands. For an m � 2 mode, rw�rs can be of the order
of 10%. This is similar to a rippled tokamak with toroidal
ripple strength of the order of a few percent in the core
region caused by the finite numbers of toroidal field coils.
With this magnitude of symmetry breaking perturbation in
B, plasma transport can be enhanced over standard neo-
classical values [5–7]. The fundamental mechanism for
the enhanced transport in tokamaks with islands is that
toroidally trapped particles, i.e., banana particles or par-
ticles trapped in the ´ cosu variation of B on a magnetic
surface, drift off the flux surface as a result of the non-
vanishing bounce averaged radial drift velocity due to the
broken symmetry in B.

To illustrate the enhanced transport, we calculate the
transport fluxes in the presence of an island in the colli-
sionless banana regime, i.e., the regime where the colli-
sion frequency is infrequent enough to allow the toroidally
trapped particles to complete their collisionless trajecto-
ries. To this end, we solve drift kinetic equation [6]

ykn ? =f 1 vd ? =f � C� f� , (2)

where yk is the particle speed parallel to B, n � B�B
is the magnetic field unit vector, vd is the particle drift
velocity, f is the particle distribution function, and C� f� is
the Coulomb collision operator. We adopt �C, a, u, E, m�
as independent variables with E � My2�2 1 eF the
particle energy, M the mass, F the electrostatic potential,
e the electric charge, m � My

2
��2B the magnetic mo-

ment, y the particle speed, and y� the perpendicular (to
B) speed. The helical flux function C satisfies ≠C�≠c �
1 2 q�qs and ≠C�≠a � ≠�dc��≠a, where q is the
safety factor at r. We assume that the radial characteristic
scale length of dc is larger than the width of the island.
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In this coordinate system, Eq. (2) becomes

ykn0 ? =u
≠f

≠u
1 ykn0 ? =u

µ
1 2

q

qs

∂
≠f

≠a
1

vd ? =f � C� f� ,
(3)

where n0 is the unit vector of the unperturbed equilibrium
magnetic field B0. The second term on the left of Eq. (3)
describes the slow drift due to the variation of q in the
vicinity of the mode rational surface. We assume this slow
drift speed is of the same order as vd ? =a.

To solve Eq. (4), we expand it in terms of small pa-
rameter jvdj�yt , where yt is the particle thermal speed,
and assume the collision frequency is of the same or-
der as the drift frequency. The lowest order equation is
then

ykn0 ? =u
≠f0

≠u
� 0 . (4)

The solution to Eq. (4) is f0 � f0�C, a�. The distribution
function f0 is determined by the next order equation

ykn0 ? =u
≠f1

≠u
1 ykn0 ? =u

µ
1 2

q

qs

∂
≠f0

≠a
1

vd ? =f0 � C� f0� ,
(5)

where f1 is the first order distribution function. Note that
parallel particle speed is yk �

p
2�E 2 mB 2 eF��M.

Because B is a function of �a, u�, particles can be trapped
in magnetic wells.

We are interested in particles that are trapped in the
toroidal magnetic well. Because toroidal symmetry is bro-
ken, trapped particles will drift off the flux surface. We
bounce average Eq. (5), i.e., operate with

H
du�ykn0 ? =u

to annihilate the ≠f1�≠u term for both circulating and
trapped particles, to obtainµ

1 2
q

qs

∂
≠f0

≠a
H�m 2 mc� 1

�vd ? =a�
≠f0

≠a
1 �vd ? =C�

≠f0

≠C
� �C� f0�� , (6)

where the angular brackets denote bounce averaging
without dividing by

H
du�ykn0 ? =u, mc denotes the

trapped and circulating boundary in the phase space,
H�m 2 mc� � 1 for circulating particles with m , mc,
and H�m 2 mc� � 0 for trapped particles with m . mc.
Note the slow drift in the a direction associated with
�1 2 q�qs� vanishes for trapped particles.

The distribution function f0�C, a� is determined by a
subsidiary expansion of Eq. (6). We adopt an optimal
ordering by assuming the drift frequency in the a direction
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is of the same order of the collision frequency. The leading
order equation is thenµ

1 2
q
qs

∂
≠f00

≠a
H�m 2 mc� 1

�vd ? =a�
≠f00

≠a
� �C� f00�� , (7)

where f00 is the leading order distribution function of
the subsidiary expansion. A solution to Eq. (7) is the
Maxwellian distribution f00 � fM�C�. Because f00 is a
function of C only, the equilibrium electrostatic potential
F with islands is also a function of C only. The next order
equation isµ

1 2
q
qs

∂
≠f01

≠a
H�m 2 mc� 1

�vd ? =a�
≠f01

≠a
1 �vd ? =C�

≠fM

≠C
� �C� f01�� , (8)

where f01 is the first order distribution of the subsidiary
expansion.

Equation (8) is the basic equation to be solved to cal-
culate the enhanced transport in the presence of an island
in the low collision frequency regime. For simplicity, we
will only display the solution in the regime where the
effective collision frequency is larger than the drift fre-
quency in the a direction. In that limit, f01 is determined
by the equation

�vd ? =C�
≠fM

≠C
� �C� f01�� . (9)

Before we present the solution of Eq. (9), we discuss the
bounced averaged radial drift velocity

�vd ? =C� � 8
I

V

≠C

≠c

s
mB0

MD

µ
E 2

K
2

∂
≠D

≠a
, (10)

where V is the gyrofrequency, K and E are complete
elliptic integrals of the first and second kind, respectively,
and D � ´s 6 dw�C̄ 1 cosma�1�2 with ´s � rs�R and
dw � rw�R. The argument of the complete elliptic inte-
grals is k2 � �E 2 mB0 2 eF 1 mB0D��2mB0D. For
particles trapped in the toroidal magnetic well k2 , 1, and
for circulating particles k2 . 1.

It is obvious that the bounce averaged radial drift ve-
locity which results from the symmetry breaking in B is
reflected in ≠D�≠a fi 0. The magnitude is proportional
to the width of the island or �dB�B�1�2. The angle de-
pendence is roughly sinma. Note that the factor ≠C�≠c
is purely geometrical and is due to the choice of C as
the radial variable. The radial scale of C in terms of the
equilibrium poloidal flux function c is of the order of
�q0

s�qs�rw. With a pitch angle scattering Coulomb col-
lision operator, Eq. (9) can be easily integrated once to
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obtain [8–10]

≠f01

≠k2 �
mB0

n
D

≠fM

≠C

IB0 ? =u

MVB0

≠C

≠c

≠D

≠a

3

Rk2

0 dk2 �2E 2 K�
�E 2 �1 2 k2�K�

, (11)

where n is the collision frequency. We only need to know
≠f01�≠k2 to calculate flux surfaced averaged transport
fluxes, e.g., the particle flux G � �NV ? =C�f , to obtain

G � 2
C1

2
�In0 ? =u�2

M7�2V2

µ
q0

s

qs
rw

∂2

m2d2
w´3�2

s

3
F�C̄�

p
1 1 C̄

K�kf �

Z
dW W5�2 1

n

≠fM

≠C
, (12)

where N is plasma density, V is the flow velocity, � �f de-

notes flux surface average, C1 �
R1

0 dk2 	���
Rk2

0 dk2 �2E 2

K����2��E 2 �1 2 k2�K�
 � 0.684, W � My2�2,
F�C̄� �

H
da �sinma�2�D�´s�3�2�

p
C̄ 1 cosma, and

k
2
f � 2��1 1 C̄�, which is a parameter that separates

inside and outside of the island separatrix. Note again
the extra ��q0

s�qs�rw�2 in the flux expression is due to the
choice of the coordinate system. The flux calculated here is
applicable only in the region outside the island separatrix,
i.e., k

2
f , 1. The region inside the island separatrix is de-

noted by k
2
f . 1. The equilibrium gradient vanishes there

�≠fM�≠C � 0�. The function F�C̄� � 2�8
p

2�3� 3

�C̄2 2 1�Q1
1�2 . 0, when D�´s � 1 where Q1

1�2 is the
associated Legendre function of the second kind. Because
the flux is inversely proportional to the collision frequency,
it can be larger than the standard neoclassical flux in
high temperature fusion plasmas with a low m island. Of
course, the 1�n scaling will not persist indefinitely as n
decreases. Eventually the drift motion in the a direction
will limit the step size to the width of the drift orbits and
the transport flux will scale linearly with the collision
frequency. The expression for the heat flux is similar to
the particle flux given in Eq. (12) except there is an extra
factor �W 2 5T�2� in the

R
dW integral. Here, T is the

plasma temperature. Comparing Eq. (12) with the toroidal
ripple induced flux [9], we see qualitative differences. In
the toroidal ripple induced flux, it is the particles trapped
in the toroidal ripple that contribute to the flux. The radial
motion is caused by the gradient of the toroidal magnetic
field. For the magnetic island induced flux, it is the to-
roidally trapped particles that contribute to the flux. The
radial motion results from the gradient of the magnetic
field variation on the perturbed magnetic surface in the
presence of the islands.

The heat conductivity based on the calculation here in
terms of the equilibrium poloidal flux scales like �In ? =u�
V�2m2d2

w´3�2
s �yt�4�n, where yt is the particle thermal

speed. Thus, the ratio of the symmetric breaking induced
heat flux to that of the banana regime heat flux [5–7] is of
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the order of �mdw�´n��2, where n� is the ion collisional-
ity parameter which characterizes the onset of the banana
regime when n� , 1. In the hot plasma core, typical value
of n� is of the order of 1022. For a 10 cm wide island lo-
cated at r � 50 cm, dw�´ is 1�10. Thus, for an m � 2
island, the ratio of the symmetry breaking induced heat
flux can be larger than that of the banana regime heat flux
and may be comparable to the anomalous transport typi-
cally present in hot tokamaks.

In summary, we have shown that magnetic islands can
break the equilibrium symmetry in the magnetic field
strength B. This symmetry breaking leads to enhanced
transport in the vicinity of the island. We have calculated
the enhanced transport flux in a tokamak with an island
and shown that it can be significant in hot plasma core.
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