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Pattern-Dislocation-Type Dynamical Instability in 1D Optical Feedback Kerr Media
with Gaussian Transverse Pumping
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We study experimentally and numerically the secondary instability corresponding to the destabilization
of stationary transverse roll patterns appearing in a 1D liquid crystal layer subjected to optical feedback.
This dynamical instability appears as roll dislocations in the spatiotemporal diagrams. We show that
it originates from the Gaussian spatial transverse dependence of a control parameter and that its cor-
responding mechanism is the selection of a local unstable wave number. This instability is the optical
counterpart of the ramp-induced Eckhaus instability observed in hydrodynamics.
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Many dissipative systems, when driven far from equi-
librium, can undergo a primary instability from a spatially
uniform state to a state with spatial periodicity when a
threshold value of an external forcing parameter, let us say,
R is exceeded. Examples are Rayleigh-Benard convection
[1], Taylor vortex flow [2], electroconvection in liquid crys-
tals [3], chemical reactions [4], optical feedback systems
[5], etc. The question then arises as to how the emerged
patterns destabilize as R is further increased. The study of
these secondary instabilities has been generally carried out
for “ideal infinite uniform systems” with periodic bound-
ary conditions for the theoretical case and large aspect ra-
tios for the experimental one. This leads to the well-known
Eckhaus, zigzag, . . . instabilities [6]. However, many real
systems cannot be considered as uniform since their control
parameters present spatial variations. The consequences of
these spatial dependences have been shown to induce a par-
ticular type of secondary instability in hydrodynamics, the
ramp-induced Eckhaus instability [7–9] which has been
also evidenced in optics in the stationary patterns appear-
ing inside the spectrum of a fiber laser [10]. In the domain
of optical transverse patterns, the smooth spatial variations
are unavoidable because of the Gaussian profile of laser
beams or else curved mirrors and should lead to the same
kind of instability as suggested in Ref. [10].

In this Letter, we show that taking into account explicitly
these spatial dependences of control parameters in optical
transverse patterns leads to a spatial secondary instability
which appears to be generic to systems with “bell shaped”
variation of the parameters. It constitutes the counterpart
of the ramp-induced Eckhaus instability in hydrodynam-
ics. More precisely, we show that the Gaussian transverse
spatial dependence of the laser beam control parameter
induces a dislocation-type secondary instability. This oc-
curs through recurrent annihilation or creation of cells
(depending on the sign of the nonlinearity) appearing as
dislocations in the spatiotemporal diagrams of output 1D
transverse pattern. We also show that the Gaussian profile
of the pump intensity leads to a selection mechanism of a
local unstable wave number as in Refs. [8–10].
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A simple optical system which gives rise to spontaneous
transverse pattern formation is a thin slice of Kerr medium
irradiated by a Gaussian laser beam and a single feedback
mirror at a distance d from the Kerr slice, which reflects
the transmitted light backwards into the medium [11], as
shown in Fig. 1. Pattern formation in such a system usually
occurs through hexagon and roll formation at threshold
[5,12,13]. The Kerr-like medium is a 50 mm thick cell
of homeotropically aligned E7 nematic liquid crystal (LC).
The cell is tilted with an angle of 45± with respect to the
optical axis in order to maximize the nonlinear effective
Kerr coefficient n2 [13]. Two identical lenses set in a
“4f-type” arrangement lead to a virtual mirror M 0, shifted
by a distance 4f with respect to M. Note that this allows
for positive and negative equivalent feedback paths d. It
was shown that changing the sign of d was equivalent in
changing the sign of the Kerr nonlinearity [14]. Thus,
it is negative for a negative optical distance d yielding a
defocusing-type system. The pump beam is emitted by
a linearly polarized frequency-doubled NdYVO4 laser at
532 nm. The laser beam diameter can be continuously and
independently varied in the two transverse directions by
means of two cylindrical lens telescopes. Let us introduce
the aspect ratio h which reads

h �
2w

L`

, (1)

FIG. 1. Scheme of the experimental setup; LC: liquid crystal
layer; L1, L2: lenses of focal length f; M (respectively, M 0):
real (respectively, virtual) feedback mirror; F, B: forward and
backward optical fields.
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where 2w is the input beam diameter at LC plane and L`

is the critical wavelength of pattern obtained for a plane
wave input beam at threshold. In our experiment, a one-
dimensional (1D) transverse laser beam corresponds to h

close to unity in one direction and much larger than unity
(typically 20 40) in the orthogonal one. This allows one to
obtain 1D patterns composed of one line of cells as shown
in Fig. 2(h). The reflected beam is collected on charge-
coupled device cameras through near or far field imaging.
Two control parameters are accessible to explore the pat-
terns and their dynamics, namely, the feedback length d
and the laser intensity I.

Spontaneous 1D pattern formation is observed
[Fig. 2(h)] as the laser intensity exceeds some threshold
value Ith. The transverse modulation of the intensity cor-
responds to the destabilization of the critical wave number

FIG. 2. (a)–(c) Spatiotemporal diagrams of experimental pat-
tern dynamics, (a) stationary; (b),(c) unstable. (d)– (f) Corre-
sponding numerical simulations. (g) Transverse intensity profile.
(h) Typical 1D transverse pattern. (a),(b),(d),(e) [respectively,
(c),(f )] Positive (respectively, negative) feedback length d. Re-
cording times are 512 s for experiments and 100t for numeri-
cal simulations. From (a) to (f): h � 36; 36; 20;36; 36; 21 and
I�Ith � 1.3; 1.6; 3; 1.14; 1.28; 3.6.
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qth appearing at the primary instability threshold. The
evolution of the pattern is illustrated using the standard
spatiotemporal plot for 1D systems with space and time
as horizontal axis and vertical axis, respectively. Fig-
ure 2(a)–2(c) shows the way through which the patterns
appear and destabilize in the presence of a Gaussian
input field [Fig. 2(g)] in different feedback situations.
Figure 2(a) shows the reference pattern which appears just
above threshold Ith. It corresponds to a stationary wave ex-
tending over the central part of the transverse profile with
an approximately constant wave number qth (the variation
of qth over the transverse profile is typically less than 2%
when I is 1% above threshold). This pattern remains sta-
tionary up to an intensity value I2 where it is destabilized
by recurrent creation (respectively, annihilation) of cells
for negative (respectively, positive) values of the optical
feedback path d as illustrated in Fig. 2(b) [respectively,
Fig. 2(c)]. We have observed that cell creation and anni-
hilation are always accompanied by outward (respectively,
inward) drift of the remaining cell pattern and always
appear in the central part of the pattern. For larger beam
diameter (typically h . 40), the dislocations are distrib-
uted more randomly in a wider central region of the spa-
tiotemporal diagrams. Although the general scheme of
pattern evolution is similar for both signs of d, the specific
values of thresholds and occurrence of dislocations are
quite different for positive and negative values of d. For
instance, for a value of h approximately equal to 36, the
ratio between the second and the first threshold I2�Ith
is, e.g., 2.3 (respectively, 1.7) with positive (respectively,
negative) d. Moreover, the occurrence of successive dis-
locations close to I2 is almost regular for negative d (time
fluctuations in recurrence periods are less than 10%),
while no regularity is observed for positive d.

The theoretical study of pattern destabilization can be
performed in the framework of the model commonly used
to describe the spatiotemporal dynamics of liquid crystal
under the presence of an external feedback. The Kerr
equation for refractive index n which captures most of the
relevant dynamics of the liquid crystal reads [15]

2l2
D

≠2n

≠x2 1 t
≠n

≠t
1 n � jFj2 1 jBj2. (2)

The Kerr effect, assumed to be due to photoexcitation, re-
laxes to zero with a time constant t. The diffusion length
lD inside the crystal is much larger than the optical wave-
length l0 thus removing the transverse interference effects.
The small thickness of the Kerr medium allows neglecting
light diffraction along the sample [11]. F and B are the
forward field and the backward field, respectively. Equa-
tion (2) must be completed by the two following equations
that govern light propagation through the sample and over
the feedback loop, respectively:

≠F

≠z
� ixnF, and

≠F

≠z
�

2i

2k0
=2

�F . (3)
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x parametrizes the Kerr effect (positive for a focusing
medium, d . 0) and k0 is the laser field wave number.
The profile of the forward propagation field is assumed
to be Gaussian so that F � F0e2�x2�w2�, with w the beam
radius at the sample.

The numerical code developed for solving Eqs. (2) and
(3) uses a Fourier-transform routine to propagate the fields
in free space and a Runge-Kutta method of order 8 to
integrate the equation of refractive index. As shown in
Fig. 2(d), a pattern appears at threshold F0th which re-
mains stationary until it is destabilized for a higher F0
value either by cell creations [Fig. 2(e)] or annihilations
[Fig. 2(f)] in agreement with experimental observations
for, respectively, negative or positive feedback d values.
The properties of regularity in successive dislocation oc-
currence also correspond to those described in the experi-
mental pattern recordings. Thus, the dynamical behaviors
obtained from numerical simulations are in good qualita-
tive agreement with those experimentally observed.

Let us discuss now the mechanism through which this
instability arises. It is clearly linked to cell drift since cell
creation implies that the already present cells move away
(i.e., the wave number in that place locally decreases). To
go further into the discussion, we need a local character-
ization of the pattern. It can be obtained by considering the
Hilbert transform of the backward intensity which provides
us with a measure of the local wave number q�x� [16].
Figure 3 shows the transverse profiles of q�x� for increas-
ing intensities for numerical simulations and experiments
in the stationary regimes [e.g., Figs. 2(d) and 2(a)]. It is
obvious that the local wave number q�x� is completely de-
termined by the variation of the intensity profile [Fig. 2(g)]
with a minimum value at the center, i.e., at the maximum
of the pump profile for d , 0. The important point here
is that the gradient of q�x� increases with light intensity as
shown by the arrows in Fig. 3. Following this scheme, the
intensity threshold for the secondary instability is reached
when the local wave number q�x� reaches an unstable do-

FIG. 3. Evolution of the transverse profiles of the wave number
q (measured in units of w21) for various intensities. (a) Numeri-
cal simulations; (b) experiments. I�Ith � �a� 1.01; 1.14; 1.25,
�b� 1.37; 1.54; 1.6. h � 36. The arrows show the way of q�x�
variation with intensity. The dashed line symbolizes very locally
the secondary instability threshold. The ripples seen on (b) are
caused by inhomogeneities in the sample.
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main, e.g., q�0� , 101w21 in the conditions of Fig. 3(a).
Beyond this value a cell creation always appears at q�0�.
This fixes the maximum variation of q beyond which q
is smaller than the smallest stable q; the local spacing be-
tween two neighbor cells then becomes too large thus lead-
ing to the creation of a new cell. Similar experiments and
simulations in the positive d case exhibit the opposite de-
pendence on the intensity.

Thus, the Hilbert transform shows that the dislocation
mechanism corresponds to the selection of an unstable
wave number. This selection is local and results from the
transverse profile of q which is induced by the transverse
dependence of the intensity. An important feature here is
that the instability arises in the region of the maximum in-
tensity, i.e., where the transverse dependence is parabolic.
The wing parts of the Gaussian profile play no role in the
dynamics since they are well below threshold. The rele-
vance of the parabolic part in the dynamics of transverse
pattern formation has already been evidenced in systems
under inhomogeneous pumping [17]. Thus, the origin of
the dislocation instability is directly related to the para-
bolic transverse dependence of the control parameter I�x�
[Fig. 2(g)].

The instability described in this Letter is induced by the
Gaussian spatial properties of a control parameter �R� and
does not correspond to the standard secondary instabili-
ties such as, e.g., Eckhaus or zigzag instabilities. Sec-
ondary instabilities induced by spatial dependence of a
control parameter have been evidenced in hydrodynamics
by Riecke and Paap [8] in a ramped Taylor vortex flow
(TVF) and more recently in optics in the emitted opti-
cal power spectrum of a fiber laser [10]. Both of these
experiments showed that the spatial dependence of R se-
lects a wave number q outside the Eckhaus stable wave
number band. A dislocation then appears each time this
wave number crosses the band limit given by the linear sta-
bility analysis of the uniform system. Another feature is
that the wave number selection from its threshold value to
its unstable value is completely determined by the spatial
gradient of the considered control parameter (the angle of
the ramp in the TVF, h in optics). This leads to different
paths in the �I, q� stability diagram and different values
of q�I2�. We can follow experimentally the progressive
selection of q and consider that the appearance of disloca-
tions can be used to locate the Eckhaus band for a given h.
Figure 4 displays the evolution of q versus the input inten-
sity for different values of the aspect ratio h in the ex-
perimental defocusing case. The evolutions of q show a
nonmonotonic behavior for h . 30. Above this value, q
decreases until it reaches a value q�I2� where a dislocation
appears in the pattern (denoted D in Fig. 4). This shows
that the selected wave number depends on both the inten-
sity I and the aspect ratio h. The same behavior is ob-
served for the positive case except that q always increases
from the first to the second instability thresholds. An ad-
vantage can be taken from this to select any required wave
244501-3
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FIG. 4. Experimental evolution of q with intensity in the
�I , q� diagram for different aspect ratios. h � 30 (diamonds),
36 (triangles), and 49 (squares). D denotes the boundary of the
secondary instability region.

number in the stable state band by a suitable choice of the
aspect ratio h.

In conclusion, we have evidenced a secondary instability
present in 1D systems with bell shaped transverse spatial
dependence of one control parameter, such as the Gaussian
profile of the intensity in optics. It appears as dislocations
in the spatiotemporal diagrams of pattern evolution. It re-
minds us of dislocations in the stationary transverse pat-
terns observed in, e.g., liquid crystal electroconvection but
is completely different since it finds its origin in the trans-
verse spatial dependence of a control parameter as oppo-
site to electroconvection where the parameters are spatially
uniform. The basic mechanism and wave number selection
can be related to that observed in hydrodynamics. Here,
the Gaussian profile can be seen as two connected identical
ramps, each of them inducing a drift [18]. The smooth con-
nection locks the drifts until the q gradient from boundary
to bulk can no longer be “absorbed” by the system then
leading to the creation/annihilation of a cell. Finally, it
suggests that any 1D pattern forming system involving a
control parameter with “parabolic” dependence such as the
central part of Gaussian shapes can undergo this kind of
instability. The open question then arises to the role of this
parabolic spatial dependence in 2D secondary instabilities
since, e.g., the stabilization mechanism has been observed
in a 2D drift instability [19].
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