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An open quantum system in steady state r̂ss can be represented by a weighted ensemble of pure
states r̂ss �

P
k �k jck� �ckj in infinitely many ways. A physically realizable (PR) ensemble is one for

which some continuous measurement of the environment will collapse the system into a pure state jc�t��,
stochastically evolving such that the proportion of time for which jc�t�� � jck � equals �k . Some, but
not all, ensembles are PR. This constitutes the preferred ensemble fact. We present the necessary
and sufficient conditions for a given ensemble to be PR, and illustrate the method by showing that the
coherent state ensemble is not PR for an atom laser.
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Introduction.— It is well known that there are infinitely
many ways to write a given mixed state as a mixture of (in
general nonorthogonal) pure states. That is, there are infi-
nitely many ensembles, ��P̂k , �k��k , consisting of ordered
pairs of pure states (rank-one projectors P̂k � jck� �ck j)
and weights �k , that represent a given state matrix (density
operator) r̂ according to

r̂ �
X
k

�kP̂k . (1)

Any such ensemble representation suggests an ignorance
interpretation of the state matrix r̂. That is, one would
claim that the system “really” is in one of the pure states
P̂k , but that one happens to be ignorant of which state P̂k

(i.e., which k) pertains. The weight �k is interpreted as the
probability that the system has state P̂k .

This interpretation can be maintained only for so-called
proper mixtures, i.e., those for which the system is not en-
tangled with its environment [1]. However, an improper
mixture may be turned into a proper mixture simply by
appropriately measuring the environment, and ignoring the
result. The partition ensemble fallacy [2] or preferred en-
semble fallacy is that one may use a particular ensemble
to draw inferences about an experiment, even if those in-
ferences depend upon the choice of ensemble. Here we do
not deny that this is indeed a fallacy.

Mixed states arise naturally in the description of open
quantum systems, in fields as diverse as chemical physics,
quantum optics, micromechanics, and nanoelectronics. It
is often possible to approximate the evolution of such sys-
tems by a Markovian master equation �̂r � L r̂, where L
is the Lindbladian [3]. Under these conditions, an experi-
menter may perform continual measurements on the envi-
ronment with which the system interacts without affecting
the master equation evolution [3,4]. Hence, the system
state can be considered a proper mixture.

Let us restrict the discussion to a stationary mixed state
r̂ss, assumed unique:
1 0031-9007�01�87(24)�240402(4)$15.00
�̂rss � L r̂ss � 0 . (2)

Also, let us consider only stationary ensembles for r̂ss.
Clearly, once the system has reached steady state, then
such a stationary ensemble will represent the system for
all times t. Now, if the ignorance interpretation were to
hold for such an ensemble then it should be possible, in
principle, for the experimenter to know which state P̂k

pertains to the system at any particular time t. The per-
tinent index k would change stochastically such that the
proportion of time the system has state P̂k is �k .

In this Letter, we show that for some ensembles this
ignorance interpretation fails. That is, there is no way
that an experimenter can know at all (long) times that the
system has some ensemble state P̂k. We say that such
ensembles are not physically realizable (PR). However,
there are other stationary ensembles that are PR.

The existence, for a given system, of two nonempty
classes of stationary ensembles, those that are PR and
those that are not, constitutes a preferred ensemble fact
(PE-fact). Note that this fact identifies a preferred class
of ensembles (the PR ones), not a unique preferred en-
semble. Also note that this fact does not contradict the
argument against preferred ensembles in Ref. [2], because
it is a fact about ensembles representing a stationary state
for all times. As we will see, the PE-fact has surprising
implications for some open quantum systems.

This Letter is organized as follows. First, we discuss
the Hughston-Josza-Wootters (HJW) theorem [5] and why
it does not contradict the PE-fact. Then we give the neces-
sary and sufficient conditions for an ensemble to be PR for
a given system. For linear systems with uniform Gaussian
ensembles, we show these conditions reduce to a simple
inequality. Next, we establish the PE-fact for a particular
system of interest: a model atom laser. Finally, we discuss
the implications of our results.

The HJW theorem.—We wish to consider a system with
state matrix r̂ which is mixed solely due to its entangle-
ment with a second system, the environment. That is, there
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is always a pure state jC� in a larger Hilbert space of sys-
tem plus environment such that

r̂ � Trenv�jC� �Cj	 . (3)

Certainly it is always possible formally to find such a pure
state [5]. Also, if the environment is initially not pure
then it can be then measured in its diagonal basis so as to
make it conditionally pure without affecting its subsequent
interaction with the system. Therefore we can assume the
existence of jC� without loss of generality.

The HJW theorem [5] says the following. For any en-
semble ��P̂k , �k��k that represents r̂, it is possible to mea-
sure the environment such that the system state is collapsed
into one of the pure states P̂k with probability �k . That
is, there exists a probability-operator measure �F̂k�k acting
on the environment Hilbert space such that

�kP̂k � Trenv�1̂sys ≠ F̂
1�2
k jC� �CjF̂

1�2
k ≠ 1̂sys	 . (4)

The HJW theorem gives rigorous meaning to the igno-
rance interpretation of any particular ensemble. It says that
there will be a way to perform a measurement on the envi-
ronment, without on average disturbing the system state, to
obtain exactly the information as to which state the system
is really in. Of course the fact that one can do this for any
ensemble means that no ensemble can be fundamentally
preferred over any other one, as a representation of r̂ at
some particular time t.

The HJW theorem does not contradict the preferred en-
semble fact introduced above. This is because the PE-fact
refers to the much stronger notion of representing the state
of the system obeying a master equation, at steady state,
by a stationary ensemble that applies at all times. This ex-
tra condition means that the HJW theorem does not apply,
and not all ensembles are PR through measuring the envi-
ronment of the system. We will now give the conditions
for an ensemble to be PR.

Establishing the preferred ensemble fact.—Consider a
system obeying the master equation �̂r � L r̂ in the long-
time limit so that it is described by the (assumed unique)
stationary state r̂ss. Now say we wish to give an ignorance
interpretation at all long times to a particular stationary
ensemble ��P̂k, �k��k satisfying

r̂ss �
X
k

�kP̂k . (5)

At a particular time t this is always possible by the HJW
theorem. That is, we can measure the environment to find
out the pertinent state P̂k , and, on average, the system re-
mains in state r̂ss. This may involve measuring parts of the
environment that interacted with the system an arbitrarily
long time ago, but there is nothing physically impossible
in doing this.

Now consider the future evolution of the system state
following this measurement. At time t 1 t, it will have
evolved to r̂k �t 1 t� � exp�L t�P̂k . This is a mixed
state because the system has now become reentangled with
its environment. The system state can be repurified by
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making another measurement on its environment. How-
ever, if the same ensemble is to remain as our representa-
tion of the system state then the pure system states obtained
as a result of this measurement at time t 1 t must be con-
tained in �P̂k�k. By the HJW theorem, this will be possible
if and only if r̂k �t 1 t� can be represented as a mixture of
these states. That is, for all k there must exist a probability
measure �wjk�t��j such that

exp�L t�P̂k �
X
j

wjk�t�P̂j . (6)

If wjk�t� exists then it is the probability that the measure-
ment at time t 1 t yields the state P̂j .

Equation (6) is necessary but not sufficient for the en-
semble ��P̂j , �j��j to be PR. We also require that the
weights be stationary. That is, that for all j and all t,

�j �
X
k

�kwjk�t� . (7)

Multiplying both sides of Eq. (6) by �k , and summing
over k, then using Eqs. (7) and (5) gives eL tr̂ss � r̂ss,
as required from the definition of r̂ss.

If the two conditions (6) and (7) are satisfied for some
time t then they will be satisfied for any multiple of t.
Therefore it is sufficient to establish that they are satis-
fied for t � dt. (Here dt is infinitesimal with respect to
all relevant system time scales but strictly must be long
compared to the environment correlation time; the master
equation is not valid on any shorter time scale.) For a
bounded Lindbladian superoperator L and distinct states
�P̂k�k , if wjk�dt� exists then it is given by

wjk�dt� � dkj 2 dkj

X
l

gkl dt 1 gkj dt , (8)

with gkj finite. The coefficient gkj may be interpreted
as the rate for the system to jump from state P̂k to state
P̂j . That is, the quantum master equation is replaced by
a classical master equation [6] for the occupation proba-
bilities �pk�k for the states �P̂k�k, where pj�t 1 dt� �P

k pk�t�wjk�dt�, and so, from Eq. (8),

�pk � 2pk

X
j

gkj 1
X
j

gkjpj . (9)

The condition (7) is then equivalent to the condition that
pk � �k be the stationary solution of Eq. (9).

Any stationary scheme of continual rank-one measure-
ments of the environment will produce stochastic dynamics
of this sort in the steady state [7]. The ignorance interpre-
tation of the ensemble thus produced is then rigorously jus-
tified. The PE-fact follows if, for the given system, there
exists at least one ensemble satisfying Eq. (5) for which
there does not exist a probability measure �wjk�t��j satis-
fying conditions (6) and (7).

The replacement of a quantum master equation by a clas-
sical master equation where the classical index k is asso-
ciated with a quantum state P̂k is often used to provide
an intuitive picture of irreversible quantum dynamics. A
240402-2
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canonical example is Einstein’s description [8] of an atom
driven by a thermal field in terms of jumps from ground
to excited states (absorption) and from excited states to
ground (emission). Of course, Einstein did not know the
more general description in terms of the quantum master
equation, but it is easy to verify that the ensemble con-
sisting of atomic energy eigenstates is a PR ensemble.
Specifically, to realize this ensemble, one must continually
measure the environment in the photon number basis.

Linear dynamics and uniform Gaussian ensembles.—
The description given above applies most naturally to en-
sembles with a discrete set of states �P̂k�k. In many cases
we wish to consider a continuum of states. In these cases
it is convenient to take a limit in which the jump process
described by rates gkj is replaced by a diffusion process.
We restrict ourselves to systems with linear dynamics, and
uniform Gaussian ensembles. These terms (defined be-
low) apply only to quantum systems whose state r̂ can be
represented by a Wigner function [3] on 2n-dimensional
Euclidean phase space:

W ��z� � Tr

"
r̂S

2nY
m�1

Z djm

2p
exp�ijm�zm 2 ẑm�	

#
. (10)

Here S denotes ordering symmetric in the operators

�ẑ1, . . . , ẑ2n� � �x̂1, p̂1, x̂2, p̂2, . . . , x̂n, p̂n� , (11)

where the coordinates �x̂n�n and momenta �p̂n�n each form
a mutually commuting set of operators with the reals as
eigenvalues, but (with h̄ � 2) �x̂n, p̂n0	 � 2idn,n0.

Such a system has linear dynamics if and only if (for
a suitable choice of coordinates and momenta) its Wigner
function obeys an Ornstein-Uhlenbeck equation [6]:

�W ��z� � � �=TK�z 1
1
2

�=TD �=�W��z� . (12)

Here =m � ≠�≠zm, K is a constant matrix, and D is a
constant matrix that is symmetric and positive semidefinite.
For simplicity, we will assume that the eigenvalues of K
have positive real parts, so that the system has a stationary
state,

Wss��z� � G��z; �0, Vss� , (13)

where Vss is defined by [6]

KVss 1 VssKT � D . (14)

Here we are using the notation that G��z; �m, V� is a multi-
variate Gaussian in �z parametrized by the mean vector �m
and the covariance matrix V [6].

A uniform Gaussian ensemble of pure states ��P̂k, �k��k

comprises states P̂k that have Wigner functions Wk��z� that
are Gaussians:

Wk��z� 
 W ��z; �mk� � G��z; �mk , V� , (15)

with mean determined by k but variance independent of k.
That is, the states all have the same “shape,” but have dif-
ferent displacements in 2n-dimensional phase space. Since
the ensemble represents r̂ss, we have (converting from the
240402-3
discrete k to the continuum variable �m)

Wss��z� �
Z

dm1 · · ·
Z

dm2n �� �m�W��z; �m� . (16)

Since Wss��z� and W��z ; �m� are Gaussians, �� �m� is also

�� �m� � G� �m; �0, Vss 2 V� . (17)

Now consider the conditions for the uniform Gaussian
ensemble to be PR, starting with Eq. (6). From Eq. (12),
if the system begins with Wigner function W ��z; �m� then,
after an infinitesimal time dt, its Wigner function will be

G��z; �m 2 K �mdt, V 1 Ddt 2 KVdt 2 VKT dt� .
(18)

This can be written as a mixture of the ensemble states,Z
d �m 0 w� �m 0; �m; dt�W��z ; �m� , (19)

if and only if the transition probability density is

w� �m 0 ; �m; dt� � G� �m 0; �m 2 K �mdt, Ddt

2 KVdt 2 VKT dt� . (20)

Since the ensemble is specified completely by V, Eq. (6)
turns into the condition on V that

BV 
 D 2 KV 2 VKT $ 0 . (21)

An equivalent condition has been considered by Diósi and
Kiefer [9] in a related context, but they did not make the
connection with physical realizability and measurements.

Equation (20) implies that the quantum master equation
in the Wigner representation (12) is equivalent to a sto-
chastic process for the mean displacements �m of the uni-
form Gaussian states with Wigner functions W ��z; �m�. The
probability distribution for �m is governed by

�p� �m� � � �=TK �m 1
1
2

�=TBV
�=�p� �m� , (22)

where here =m � ≠�≠mm. This is analogous to Eq. (9).
To establish that condition (7) is also satisfied, we thus

have to show that the stationary solution of Eq. (22) is
p� �m� � �� �m�. From Eq. (22) we get [6]

pss� �m� � G� �m; �0, U� , (23)

where U is defined by KU 1 UKT � BV . Now using
Eqs. (14) and (21) we obtain

U � Vss 2 V . (24)

From Eq. (17) it follows that pss� �m� � �� �m� as desired.
Example: the atom laser.—We now apply the above for-

malism to the problem of an atom laser. We consider only
a cw atom laser (which has not yet been realized), which
would consist of a continuously damped and replenished
Bose-Einstein condensate. The damping at rate k would
produce a continuous beam of coherent atoms [10]. The
240402-3
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simplest quantum model for such a device uses a single
mode description of the condensate, with annihilation op-
erator â � �x̂ 1 ip̂��2. Assuming a Poissonian pump
with rate km, the stationary state of the laser is [10,11]

r̂ss �
Z df

2p
j
p

m eif� �
p

m eifj �
X̀
n�0

e2m mn

n!
jn� �nj .

(25)

Here j
p

m eif� is a coherent state (eigenstate of â) [11].
Equation (25) shows two of the infinitude of different

ensemble representations of r̂ss. The number state en-
semble �jn��n is clearly PR by making continual measure-
ments of the environment in the atom number basis. On
the other hand, to determine the status of the coherent state
ensemble �jpm eif��f, it is necessary to examine the dy-
namics of the atom laser.

The simplest reasonable model for an atom laser comes
from taking the standard ideal optical laser model [10,12]
and adding the interaction between condensate atoms [13],
governed by the Hamiltonian �h̄k�4m�xây2â2, with

x �
8pmh̄as

km

Z
d3rjc�r�j4. (26)

Here c�r� is the wave function for the condensate mode,
and as is the s-wave scattering length. This nonlinear
Hamiltonian is difficult to treat exactly, so we linearize
the Lindbladian evolution about a mean field �â� �

p
m

(as appropriate for considering the physical realizability of
the coherent state). We have shown elsewhere [13] that this
results in linear quantum dynamics for the Wigner function
W�x,p� as in Eq. (12) with

K � k

√
1 0
x 0

!
; D � k

√
2 0
0 2 1 n

!
. (27)

Here x and p represent amplitude and phase fluctuations,
respectively, and n $ 0 is the excess phase diffusion.

To check if the coherent state ensemble is PR, we simply
need to check the condition (21). We find

V �

√
1 0
0 1

!
�) BV � k

√
0 2x

2x 2 1 n

!
. (28)

The matrix BV is positive semidefinite only for x � 0.
That is, the coherent state ensemble is not PR for any finite
atomic interaction energy.

Discussion.— In this Letter we have introduced the nec-
essary and sufficient conditions for an ensemble of pure
states to be physically realizable as a stationary descrip-
tion of a Markovian system in the long-time limit. Here
physically realizable means that, by measuring the envi-
ronment of the system, an experimenter could collapse the
system state into a stochastically evolving pure state, such
that the proportion of time it is in a particular pure state
is equal to the weight of that pure state in the ensemble.
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For uniform Gaussian ensembles for systems with linear
dynamics, we have derived a simple inequality to distin-
guish PR ensembles from non-PR ensembles. The exis-
tence in general of these nonempty classes of ensembles
constitutes the preferred ensemble fact.

To illustrate this fact, we have shown that, in a simple
model for an atom laser, the number state ensemble is pre-
ferred over the coherent state ensemble because only the
former is PR. This is due to the presence of atomic in-
teractions, described by a Hamiltonian proportional to the
ay2a2. We proved this using a linearized analysis which
included the loss and gain processes. However, the result
is perhaps not surprising since it is well known in quan-
tum optics that this Hamiltonian will turn a coherent state
into a squeezed state [11], which cannot be described by a
mixture of coherent states.

This result is interesting because the ignorance interpre-
tation of the coherent state representation (“the laser is re-
ally in a coherent state, I just have not been bothered to find
out which one it is”) is very commonly adopted in quan-
tum optics (see Ref. [14] for a discussion). Although it is
tenable, in principle, for most optical lasers where x ø 1,
it is not tenable for atom lasers where we expect x ¿ 1
[13]. So although atom lasers may give a coherent output,
the condensate cannot be meaningfully considered to be in
a coherent state. The relation between output coherence
and the physical realizability of states of the condensate is
explored elsewhere [13].
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T. Rudolph and R. Spekkens.
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