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Propagation of waves in an extended excitable system is considered. It is shown that traveling wave
fronts can be triggered and maintained via local periodic modulations of an appropriate system parameter.
For a finite range of perturbation frequencies, this new class of pacemakers introduces spatiotemporal
self-organization in an otherwise quiescent medium. Excitation waves of activity similar to those ob-
served in heart tissue cultures and other biological preparations can emerge in the presence of these

pacemakers.
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Wave propagation in excitable media provides an excel-
lent example of spatiotemporal self-organization. Target
wave fronts have been observed in both biological [1-4]
and chemical systems [5—7]. The underlying mechanisms
for the inception of these patterns are of practical interest as
they provide valuable insight into relevant problems such
as ventricular tachycardias [4]. For example, paroxysmal
starting and stopping of circulating waves of activity can
give rise to serious complex rhythms in the cardiac sys-
tem [8]. Although, wave propagation from a source point
is reasonably well understood, some curiosity persists re-
garding the emergence of the pacemaker (source) regions
[1]. The two common triggers for the emergence of pace-
makers discussed in the literature [9,10] are diffusive in-
stability and local physical/chemical inhomogeneities.

Inception of wave fronts in a quiescent excitable media
is traditionally achieved via a large stimulus provided to an
accessible control parameter [11,12]. This usually involves
parametrically crossing the bifurcation point separating the
homogeneous and oscillatory states. In this Letter, we re-
port a new mechanism for creating pacemakers capable of
inducing spontaneous pattern formation in a steady state.
Instead of superthreshold perturbation with a large ampli-
tude, small amplitude modulation of a control parameter
with an appropriate tuning frequency (bifurcation point in
parameter space of the autonomous system is not crossed).
For this class of organizing centers the quiescent excitable
system, upon inspection, abruptly starts exhibiting wave
propagation without the mandatory large amplitude pa-
rameter gradient between the pacemaker region and the
surrounding environment. Spontaneous (abrupt) spatio-
temporal self-organization [13] of a quiescent excitable
media in the absence of known factors such as random
concentration fluctuations and physical defects [14] could
be attributed to such pacemakers.

In order to study the effect of a resonance induced wave
propagation on an extended excitable system we use the
modified Oregonator equations [15] accounting for the
photosensitivity [16,17] of the Beluosov-Zhabotinsky re-
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action. After a series of scalings and stoichiometric ap-
proximations, the dimensionless spatiotemporal model can
be expressed as
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are the dimensionless system parameters. To integrate
associated partial differential equations [Eq. (1)] the sys-
tem size was chosen to be 1 cm (one spatial dimension)
and then divided into 100 grid elements for simulation
using a 3rd-order Runge-Kutta algorithm subjected to
Neumann boundary conditions. A constant step size in
time (A = 0.005) was used.
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The dynamics of the temporal part of the model system
were studied using linear stability analysis and numerical
integration. Scanning the system dynamics as a function
of light intensity (¢) reveals the existence of a subcritical
Hopf bifurcation point [15]. Consequently, the system is
oscillatory for ¢ < 8.0 X 1077, bistable between a stable
focus and a stable limit cycle 8.0 X 1077 < ¢ < 8.05 X
1077, and exhibits steady state dynamics for ¢ > ¢,
where ¢, = 8.05 X 1077, Analogously, the spatiotem-
poral system [Eq. (1)] exhibits traveling wave and steady
state behavior at corresponding parameter values. It needs
to be pointed out that in all of our simulations, parameter
regions of bistability and oscillatory dynamics are inten-
tionally precluded as the control parameter ¢ > ¢, where
¢. = 8.05 X 1077,

A frequency and amplitude scan in the vicinity of the
subcritical Hopf bifurcation reveals the extent in parameter
space where resonance induced excitation can be observed.
The U-shaped curve in Fig. 1 represents the parameter
domain where nonlinear resonance lowers the threshold for
the observance of the firing pattern. The existence of the
optimum frequency is intimately related to the fact that the
excitable system [Eq. (1)] has a resonance (nonlinear) at a
frequency close to the imaginary part of the eigenvalues of
the flow dynamics linearized around its fixed point.

Detailed investigation of the invoked dynamics within
the U-shaped curve reveals behavior consistent with

0.18

0.16
3

0.15

0.14

0.13 . .

0 1 2
VIV,

FIG. 1. The U-shaped curve encapsulates the region in

parameter space (amplitude-frequency domain) where subthresh-
old modulations of ¢ triggers excitation in the model system
(o =9.7 X 1077). The model parameters of the autonomous

system are: km 2M3s™HH? kg, = (3 X 10° M™2s")H,
k()3 = (42 M I)H, k()4 = 3 X 103 -1 71 k()5 =
SMlsT ky = 1.05 X 1073 , Vg = OOZS l, h = 0.5,

H =037M, A =0.15M, M =02M7!, and V = 0.05 M.
Initial conditions: Xo =0M, Y, =1 X 107* M, and Z, =
0 M, while frequency and amplitude of the superimposed
periodic perturbations are scanned. « = 0.17 corresponds
to the parameter threshold that ensures that ¢ > ¢, where
¢, =8.05x 107"
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two-frequency nonlinear resonance. Figure 2(a) shows
three induced time series and the corresponding forcing
functions responsible for their generation. Moreover, we
calculated the firing number (No. of excitations/No. of
perturbations) as a function of the forcing frequency in the
U-shaped curve. It reveals a devil’s staircase as shown in
Fig. 2(b). The existence of a devil’s staircase with clearly
demarcated phase-locked domains is typical of forced
oscillatory/excitatory dynamics.

For resonance induced pacemakers we choose ¢ > ¢,
such that the extended excitable media is quiescent. Subse-
quently parameter ¢ is modulated sinusoidally for a finite
subregion of the excitable media (first ten oscillators),
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FIG. 2. Details within the U-shaped curve reveal different
types of phase-locked dynamics consistent with the existence
of a nonlinear resonance between the frequency of the external
forcing and that of the damped oscillations. (a) Time series
for different firing patterns invoked by corresponding peri-
odic modulations. (b) Devil’s staircase encapsulated by the
U-shaped region for resonance induced excitation. It indicates
the inception of both rational and irrational firing numbers
under the influence of periodic modulations.
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FIG. 3. (a) Space-time plot of the excitable media (100 os-

cillators) in one spatial dimension (system size = 1 cm) under
Neumann boundary conditions. It indicates inception of wave
propagation in the homogeneous state by virtue of periodic mod-
ulations of the light flux. The model parameters are same as
Fig. 1, Initial conditions: Xo=0M, Yy =1X10"* M, and
Zy = 0 M. Diffusion parameters: D, = 1.5 X 1073, D, =
1.68 X 1073, and D, = 8.75 X 107%. Control parameters: v =
(1.1 X vgy) where vy = 0.02 s™! and @ = 0.165. (b) Local time
series of the first oscillator for the space-time plot of (a).

ensuring that ¢ never crosses the excitation threshold of
the autonomous system (¢.) in parameter space. Such
stimuli are known to evoke a harmonic response [18,19] in
the homogeneous media. However, consistent with results
of the temporal model, for a range of forcing frequencies
(U-shaped resonance curve), perturbations can induce ex-
citation waves that initiate at the site of stimulation and
subsequently traverse the entire system.

Figure 3(a) shows the space-time plot for the extended
excitable system of 100 diffusively coupled oscillators in
one spatial dimension. The perturbations are superim-
posed locally, i.e., only the first ten oscillators are modu-
lated parametrically. This results in the emergence of wave
propagation in the previously homogeneous state. The lo-
cal time series of the first oscillator is shown in Fig. 3(b).
It indicates inception of a constant velocity propagating
pulse in the excitable media.

To reiterate, excitation in our case occurs via resonance
between the damped oscillations around the stable fixed
point and the periodic perturbations with an appropriate
tuning frequency. In our model system, this resonance
amplifies the invoked oscillations of the state variables
in the neighborhood of the excitable fixed point. For
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systems with low excitability these resonant oscillations
may grow larger such that the system crosses the semicir-
cular separatrix in the state space and consequently triggers
an excitation wave. This however does not preclude the
emergence of activation waves in highly excitable systems
where the stable focus is located at almost the minima of
the N-shaped null cline. Continuous periodic perturbations
are necessary in order to sustain these waves.

The distinction between the present work and the pio-
neering work of Kddar et al. [17] is twofold: In their work
the parameter threshold is being crossed by virtue of the
superimposed noise. In this sense their results are simi-
lar to the concept of coherence resonance [20] in a spatio-
temporal system. Secondly the noisy perturbations in their
work are superimposed globally on the extended excitable
system. In contrast our simulations involve invoking pat-
tern formation using resonant periodic perturbations that
are locally superimposed.

Our results indicate that apart from the existing no-
tions of random concentration fluctuations and defects,
local periodic perturbations with an appropriate tuning
frequency can also induce wave propagation in a quies-
cent media. This new class of organizing centers does
have stringent prerequisites for inception, hence they could
emerge in a number of excitable media. They need to be
considered, included, and studied as one of the probable
causes for spontaneous pattern formation in an excitable
media. This is of practical interest in biological (excitable)
media where such abrupt pattern formation could have
pathological implications [4,8]. For example, it is possible
to envisage a scenario where a part of the media is active
(exhibiting oscillations) and the remaining is passive (fixed
point behavior). Because of the intrinsic mutual coupling
within the two regimes, the oscillations in the active region
could translate as an external forcing for the units in the
passive region. If this forcing has the right frequency, it
could result in the inception and subsequent propagation
of the excitation waves in the previously passive domain

even if the coupling strength (amplitude) is small.
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