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Finite asexual populations can accumulate an increasing number of deleterious mutations by a process
known as Muller’s ratchet, which consists of successive losses of the fittest or least-loaded classes of
individuals in the population. We present here a simplified theoretical framework to describe the serial
bottleneck passages setup used in experiments to demonstrate the decrease of the population mean fitness
due to the operation of ratchet. In particular, we calculate the expected time between consecutive clicks
of the ratchet and derive expressions relating the moments of the mean fitness distribution to the mutation
and selection parameters.
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In an asexual population random loss of all individuals
with the fewest mutations, i.e., those in the least-loaded
class, is irreversible because the chance of occurrence of
back mutations is negligible in very long gene sequences.
As the vast majority of new mutations are probably slightly
deleterious and the offspring have at least as many muta-
tions as their parents, asexual populations are at risk of
degenerating, in the sense that their mean fitness is con-
tinually decreasing. This process of irreversible accumu-
lation of deleterious mutations, known as Muller’s ratchet,
has been advanced as a possible reason for the evolution
of recombination since sexual reproduction can recreate
individuals which have fewer mutations than their parents
[1,2]. Despite recent results questioning the relevance of
Muller’s ratchet to the evolution of sex [3], the fitness loss
in asexual populations, mainly RNA viruses, is already a
well-established experimental fact [4,5]. Moreover, the
understanding of the operation of the ratchet is of great
importance since this process may be involved in the de-
generation of the Y chromosome [6] and mitochondria [7].

From a theoretical standpoint one important issue con-
cerns the rate with which the ratchet clicks, usually defined
as the inverse of the mean time between successive losses
of the least-loaded classes. Since the pioneering work of
Haigh, studies of the ratchet rate have been carried out in
the framework of the classical Wright-Fisher model of an
asexually reproducing population of fixed size N [8]. Al-
though many approximations to the ratchet rate, valid for
different ranges of the control parameters of the model,
have been proposed [8–12], a reliable general expression
for this quantity remains to be obtained yet. From the prac-
tical side, criticisms have been directed to the fact that the
ratchet becomes effective only for rather small population
sizes, which are not usually realized in nature [13]. In ad-
dition, the experimental protocol used to verify the opera-
tion of Muller’s ratchet [4,5] cannot be described by a fixed
size population model. In fact, those experiments are based
on the passage of a large population through a bottleneck
of one or a few individuals, which provides the necessary
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conditions to engage the ratchet. In Fig. 1 we present the
scheme of the serial transfer protocol used in those experi-
ments. In particular, in the seminal experiment of Chao on
the RNA bacteriophage f6, only one randomly chosen in-
dividual is transferred to a fresh plaque (test tube) at each
growth cycle, and during the incubation time T � 24 h the
population increases from that single individual to about
8 3 109 viral particles per plaque [4].

Here we set out to model the bottleneck transmission
experiments assuming that the incubation stage lasts
long enough for the population to attain the deterministic
mutation-selection equilibrium. Then the loss of a class of
individuals can occur only in the passage from a test tube
to another, which we model by randomly choosing N in-
dividuals from the infinite population at equilibrium. The
simplicity of the proposed theoretical framework allows
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FIG. 1. Scheme of a serial transfer experiment. During the
incubation period the population reaches the deterministic
selection-mutation balance. Loss of the least-loaded class due
to random sampling may occur only in the transfer stage.
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us to address elusive issues such as the effect of epistasis
among mutations. In particular, it has been suggested
that synergistic epistasis, i.e., the harmful effect of a
new mutation increasing with the number of mutations
already present in the individual, can effectively halt the
action of Muller’s ratchet [14]. In our framework we
show analytically that the ratchet never stops; rather, for
sufficiently long times it enters a stationary regime of
constant rate, akin to the case where the mutations act in-
dependently. Another situation of interest, but of less bio-
logical relevance, is that of diminishing epistasis where
the disadvantageous effect of a new mutation is attenuated
by the previous ones. In addition, assuming the absence
of epistasis and a single transferred individual per pas-
sage we derive explicit expressions relating the moments
of the population mean fitness at a given passage to the
mutation rate per genome and the selective cost against
mutations.

Although we are concerned with the limit of infinite
genomes only, it is instructive to begin modeling each
asexually reproducing haploid individual by a sequence of
L sites, each one labeled 0 or 1: the bit 0 denotes the
correct nucleotide type, and the bit 1 a mutant type. The
probability of erroneous replication per site, u, is assumed
to be the same for all sites. Taking the limit L ! ` and
u ! 0, such that the mean number of new mutations per
individual per generation U � uL is finite, yields the cele-
brated infinite-sites model. In this limit, the probability of
a new mutation occurring at a mutant site vanishes as 1�L
and so back mutations can be safely neglected. Hence the
probability that k new mutations occur in one individual is
given by the Poisson distribution

Mk � e2U Uk

k!
. (1)

In addition, assuming that all mutations are deleterious, the
fitness of an individual with k mutations is

wk � �1 2 s�ka

, (2)

where s [ �0, 1� is the selective advantage per site of the
correct nucleotide type, and a $ 0 is the epistasis parame-
ter. The case a � 1 corresponds to absence of epistasis;
i.e., each new mutation reduces the fitness of the individual
by the same amount, irrespective of the number of previ-
ous mutations. Synergistic and diminishing epistasis are
described by a . 1 and a , 1, respectively.

Next we proceed with the modeling of the incubation
period, when the population undergoes unlimited growth;
i.e., each individual produces very many offspring in a
single generation. Individuals in the kth class, i.e., with
k mutations, produce a number of offspring which is pro-
portional to wk; each offspring carries the k mutations in-
herited from its parent plus a random number i of new
mutations, distributed according to Eq. (1). Assuming, as
usual, nonoverlapping generations, in a very large popula-
tion the average number of individuals in class k at gen-
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eration t 1 1 is

nk�t 1 1� ~

kX
j�0

Mk2jwjnj�t� (3)

so that the frequency Ck�t� of individuals carring k muta-
tions is given by

Ck�t 1 1� �
nk�t 1 1�P`

k�0 nk�t 1 1�
�

1
w�t�

kX
j�0

Mk2jwjCj�t� ,

(4)

where w�t� �
P`

j�0 wjCj�t� is the mean fitness of the
population at generation t.

The opposing forces of mutation and selection against
deleterious mutations create an equilibrium distribution of
mutations across the population, given by the stationary
solution of Eq. (4), Ck�t� � Ĉk. The distinct equilib-
rium solutions are identified by the index m $ 0 of the
least-loaded class, i.e., Ĉ0 � Ĉ1 � . . . , Ĉm21 � 0, and
Ĉk . 0 for k $ m. For a given m the equilibrium mean
population fitness takes on a very simple form, namely,

ŵ � wme2U , (5)

which allows us to write Ĉk in terms of the fitter classes
only,

Ĉk �
1

wm 2 wk

k21X
j�m

Uk2j

�k 2 j�!
wjĈj k . m . (6)

Hence starting with k � m 1 1 we can calculate the ratios
Ĉk�Ĉm for k . m recursively and then obtain Ĉm using
the normalization condition

P
k Ĉk � 1.

An analytical solution to Eq. (6) is available only in the
case a � 1 [8],

Ĉk �
uk2m

�k 2 m�!
exp�2u� k $ m , (7)

where u � U�s. Interestingly, in this case the frequency
of the fittest class is Ĉm � e2u, regardless of m. Although
for a fi 1 the class distribution at equilibrium can be ob-
tained numerically only, we can easily obtain an analytical
solution for Ĉm in the limit of large m. In particular, for
a , 1 we find

Ĉm � exp

∑
Um12a

a ln�1 2 s�

∏
(8)

so that the frequency of the fittest class vanishes exponen-
tially with increasing m, while for 1 , a , 2 we find

Ĉm � e2U�1 2 U�1 2 s�ama21

� . (9)

Similar results hold for a $ 2 as well, except that Ĉm

approaches e2U much faster with increasing a. Hence,
as far as the frequency of the fittest class is concerned,
after very many clicks of the ratchet, synergistic epistasis
reduces to the strong selection limit of the case where
mutations act independently.

The next stage is to model the random sampling of N
individuals from a pool containing an infinite population
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at equilibrium with the frequencies Ĉk . In this case the
probability of picking nk # N individuals in class k $ m
is proportional to �Ĉk�nk . Hence, the best class of in-
dividuals in the population is irreversibly lost whenever
nm � 0 and the probability that this event takes exactly
dt � 1, 2, . . . transfers to happen is given by the geomet-
ric distribution

Pdt � �1 2 �1 2 Ĉm�N �dt21�1 2 Ĉm�N . (10)

Then given that the best class is m the expected number
of passages or waiting time for the loss of this class is
simply

�dt�m � �1 2 Ĉm�2N 2 1 . (11)

In Fig. 2 we show the dependence of this waiting time
on m for N � 30 and several values of the epistasis pa-
rameter. Clearly, if any class different than the least-loaded
one is lost in the sampling process, it will be recreated in
the incubation period through mutations of the least-loaded
class, leading eventually to the stationary distribution that
satisfies Eq. (6). A difficulty arises with the interpreta-
tion of �dt�m as the average number of passages between
consecutive clicks of the ratchet because it may happen
that classes m, m 1 1, . . . are lost in the same passage;
i.e., the ratchet yields many simultaneous clicks. How-
ever, provided that the product NĈm is not too small, the
probability of such simultaneous clicks is negligible and
so knowledge of the time between losses of consecu-
tive classes suffices to describe the operation of Muller’s
ratchet in serial transfer experiments. Of course, simulta-
neous clicks are the rule rather than the exception in ex-
periments involving the transference of a single individual
�N � 1� as well as in the case of diminishing epistasis
�Ĉm ! 0�. These caveats apply to the studies of Muller’s
ratchet based on the Wright-Fisher model as well, though
only �dt�m has been considered in that framework [8–12].

0 5 10 15 20 25 30

m

10
0

10
6

10
12

 <
 δ

τ 
>

FIG. 2. Expected time �dt�m between consecutive clicks of
the ratchet as a function of the number of mutations m of the
lost best class for s � U � 0.5, N � 30 and (bottom to top)
a � 0.5, 0.6, . . . , 1.5.
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Our results point out that synergistic epistasis �a . 1�
does not halt the ratchet, which would be the case if
�dt�m would increase without bounds as m increases [14].
Rather, the ratchet rate 1��dt�m tends to the constant value
�1 2 e2U�N after a very long transient regime. The ex-
istence of such a long transient may explain the steady
increasing of the ratchet rate observed in the simulations
of the Wright-Fisher model under synergistic epistatic se-
lection. In fact, those simulations run typically up to 104

generations with N . 100 [14], which is far from being
sufficient to estimate the asymptotic behavior of the ratchet
rate. Actually, were it not for the analytical expression
Eq. (8), we would not be able to tell from inspection of
Fig. 2 whether �dt�m vanishes or not for large m in the
case a , 1.

For the parameter setting of Fig. 2, the estimate of
�dt�m in the case of absence of epistasis �a � 1� is about
3 orders of magnitude higher than for the Wright-Fisher
model. The main reason for this discrepancy is that in
the latter model there is an additional mechanism to wind
the ratchet on, namely, many different mutations may arise
such that each individual in the fittest class acquires at least
one new mutation, leading thus to the loss of that class.
Since in our framework mutations act only in the incuba-
tion stage where the number of individuals in any class
is infinite, this additional mechanism does not operate. In
this sense, Eq. (11) can be viewed as an upper bound to the
value of �dt�m in the Wright-Fisher model, thus strength-
ening our claim that synergistic epistasis does not halt the
ratchet. We note that in this analysis m is viewed as a
fixed control parameter that specifies a particular equilib-
rium solution of Eq. (4), namely, the solution for which
there are no individuals carrying less than m mutations. In
the sequel, we show that m is a random variable whose
mean �m� increases linearly with the number of passages
in the absence of epistasis. We expect this result holds for
a . 1 as well in the case of large t, while �m� should
probably increase more rapidly with t for a , 1.

Despite the theoretical interest, the ratchet rate is not
accessible experimentally; rather what is measured is the
decrease of relative fitness of the transferred individuals
using paired-growth experiments. Briefly, in these experi-
ments the individual chosen at passage t competes with
the ancestral type (i.e., a mutation-free individual) in an
appropriate medium, its relative fitness being defined as
the ratio between the concentrations of the two types of
individuals [4,5]. We note that according to Eq. (5) the
fitness of the transferred individual at a given passage de-
termines completely the mean fitness of the population in
the subsequent incubation period. To describe the experi-
mental setup, henceforth we set N � 1 and, since there is
no compelling evidence of synergism between mutations
(see, e.g., [15,16]), a � 1 as well. The relevant quantity
to describe Chao’s bottleneck experiments is the proba-
bility distribution Pt�m� that m is the minimum number
of mutations immediately after passage t or, equivalently,
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that one individual of class m is transferred in passage t.
Explicit calculation for m � 0 and 1 yields

Pt�m� � e2ut �ut�m

m!
, (12)

where u � U�s as before. The proof that this equation
holds for m . 1 as well is as follows. Clearly, Pt�m� is
nothing but the equilibrium frequency of class m just be-
fore passage t which, according to Eq. (7), depends on
the class that has the minimum number of mutations im-
mediately after passage t 2 1. Hence Pt�m� is given by
the recursion equation

Pt�m� �
mX

n�0
Pt21�n�e2u um2n

�m 2 n�!
, (13)

which we can easily verify to be satisfied by the Poisson
distribution (12). Using Eq. (5) we find that the expected
fitness of the population immediately after passage t is
simply

�ŵ� � e2U
X̀

m�0
wmPt�m� � exp�2�1 1 t�U� , (14)

which, rather surprisingly, is independent of the selection
coefficient s. However, the ratio

�ŵ2�
�ŵ�2 � eUst (15)

increases exponentially with s and so does the variance.
Equations (14) and (15) have great potential for practical
use in that they allow a direct estimate of the mutation rate
per genome U and the selection coefficient s through mea-
surements of the fitness distribution over different samples
used to initiate independent passage series. In fact, we note
that plots of the log fitness of the evolved wild type (least-
loaded class) relative to the ancestral individual (mutation-
free class) versus passage number for four samples are well
fitted by straight lines with negative slopes [16].

As serial bottleneck passages together with paired-
growth experiments are becoming standard techniques to
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study the effects of mutations, the formulation of a theo-
retical framework to interpret the experimental results is
of great importance and may lead to alternative methods
for estimating selection coefficients and mutations rates.
In particular, while we have assumed that the virus multi-
plies extremely rapidly so that the population becomes
effectively infinite in a single generation, a careful mod-
eling should take into account the possibility that the
ratchet clicks in the few generations immediately after the
transfer, when the population is still very small. A more
realistic framework to study Muller’s ratchet in serial
passages experiments should consider then an expanding
population with overlapping generations. The present con-
tribution represents the first step to tackle this important
but largely unexplored research issue.
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