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Effects of Spin and Orbital Degeneracy on the Thermopower of Strongly Correlated Systems
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We study thermopower in strongly correlated electron systems with orbital degeneracy using numerical
diagonalization method on finite-size clusters. It is shown that the thermopower is strongly enhanced by
the spin and orbital degrees of freedom, but the resistivity is significantly less affected. A key for the
strategy of new thermoelectric materials in transition metal oxides is proposed in the light of the theory.
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Thermoelectric materials have attracted much attention
recently. They generate electric energy from heat using
thermoelectric effect of solids. Since the generation of
electric energy is not accompanied with pollution essen-
tially, the thermoelectric materials are available for waste
heat utilization, power source of deep-space probes, and
so on.

So far, semiconductors have mostly been used for ther-
moelectric materials. In application, not only large ther-
mopower but also low electrical resistivity is required.
However, the thermopower and the resistivity are not in-
dependent of each other, but depend on carrier density.
Although the thermopower increases logarithmically with
decreasing carriers, the resistivity is also enhanced. Con-
sequently, the optimum carrier density is estimated to be
1018 1019 cm23. Under this restriction, the present ther-
moelectric materials have been synthesized [1].

Recently, Terasaki et al. [2] have shown the large ther-
mopower in the layered compound NaCo2O4. The thermo-
power of this oxide increases with increasing temperature,
and reaches 100 mV�K at 300 K. The temperature depen-
dence of the in-plane resistivity shows metallic behavior
and the resistivity at 300 K is 200 mV cm. The estimated
carrier concentration is of the order of 1022 cm23 which
is comparable with a typical value for metals and differ-
ent from that in the conventional thermoelectric materials.
The oxide is a typical strongly correlated electron system
[2,3], and the transport properties are not well understood.

Theoretical study of thermopower in strongly correlated
electron systems has been developed by several authors
[4–11] based on the Hubbard model. At high tempera-
tures, the thermopower is obtained from the entropy
consideration. This is known as the Heikes formula [12].
Within the framework, the importance of the spin [4,6]
and orbital degrees of freedom [7,8] have been discussed.
There exist several attempts to study the temperature de-
pendence of thermopower using retraceable path approxi-
mation [5] and dynamical mean-field theory [9,10]. Jaklič
and Prelovšek [11] examined the temperature dependence
of the chemical potential using finite-temperature Lanczos
method and gave a qualitative discussion of the ther-
mopower in cuprates. Because the thermopower must
obey the Heikes formula at high temperatures, there is no
simple way to extend the theory to the finite-temperature
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region. In the multiband systems, the atomic parameters,
such as Hund’s-rule coupling and energy-level splitting
between orbitals, affect the electronic structure, so that
the study of spin and orbital degrees of freedom on
thermopower is complicated.

In this Letter, we will show that spin and orbital de-
grees of freedom cause large thermopower in contrast with
the resistivity in strongly correlated electron systems. We
adopt the numerical diagonalization method on finite-size
clusters and examine the temperature dependence of ther-
mopower and resistivity. The origin of the large ther-
mopower in NaCo2O4 and the important ingredients for
the strategies of new thermoelectric materials are proposed
in the light of our theory.

First, we apply the numerical diagonalization method
to the one-dimensional t-J model. The Hamiltonian is
written as

H � 2t
X
is

�cyi,sci11,s 1 c
y
i11,sci,s� 1 J

X
i

�Si ? �Si11 ,

(1)

where t is the transfer integral of an electron between
neighboring sites, c

y
i,s and ci11,s are creation and anni-

hilation operators of electron with spin s �� ", #� at sites i
and i 1 1, respectively, and J is the antiferromagnetic su-
perexchange interaction between neighboring spins. The
doubly occupied state in a site is excluded. The ther-
mopower is given by

Q � 2
1

eT

M12

M11
1

m

eT
, (2)

where e is the absolute value of electron charge and m is
the chemical potential. M1l (l � 1, 2) is expressed as

M1l �
Z `

0
dt

Z 1�kBT

0
dt

3 Tr�e2H�kBTj1,q�0�2t 2 it�jl,q�0� , (3)

where the symbol “Tr” denotes trace and is the summa-
tion over some complete set of states, and j’s are particle
current (l � 1) and energy flux operators (l � 2) in the
Heisenberg representation, respectively. These operators
are obtained from the following procedure. The conserva-
tion law of the particle density and energy density gives
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the expression of current and energy flux operators in real
space. The particle density and energy density at site r are
defined as

nr �
X
s

cy
r,scr,s , (4)

hr � 2
t
2

X
d�61,s

�cy
r,scr1d,s 1 H.c.�

1
J
2

X
d�61

�Sr ? �Sr1d , (5)

respectively. The conservation law is expressed by the
following equations:

2i�nr , H� �
X
r,d

d21j1,�r,r1d� , (6)

2i�hr , H� �
X
r,d

d21j2,�r,r1d� , (7)

where
P

d.0 j1,�r,r1d� and
P

d.0 j2,�r,r1d� define the cur-
rent and energy flux operators in forward direction, respec-
tively. The Fourier transformed operator jl,q is defined asX

d.0

j1,�r,r1d� �
1
L

X
q

jl,q exp�iqr� , (8)

where L denotes the number of unit cells. The chemical
potential m is calculated as a function of temperature and
number of electrons N using the following equation:

N �

P
Ne

Tr�e2�H2mNe��kBTNe�P
Ne

Tr�e2�H2mNe��kBT �
. (9)

The summation is performed over all possible number of
electrons Ne. We have diagonalized the Hamiltonian (1)
on a 12-site periodic chain with 6 holes using Householder
method and calculated the thermopower. The result is
shown in Fig. 1. With increasing temperature, the absolute
value of the thermopower increases rapidly up to kBT � t
and saturates at high temperatures. This is consistent with
the previous study [5]. The thermopower approaches the
value 2�kB�e� ln2 which is given by the Heikes formula
[4,5]. This value is caused by spin degeneracy.
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FIG. 1. Thermopower in the one-dimensional t-J model on a
12-site periodic chain with six holes. J�t � 0.25 is used. The
dotted line indicates 2ln2 which is given by the Heikes formula.
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The numerical diagonalization method easily takes
account of the atomic parameters such as Hund’s-rule
coupling and energy-level splitting between orbitals to
examine the electronic structure in a finite-size system.
Let us examine the effects of spin and orbital degrees of
freedom on thermoelectric properties using this method.
We examine thermopower and electrical resistivity in the
following model:

H � 2t
X
ins

�cyi,n,sci11,n,s 1 H.c.� 1 J
X
i,n

�Sin ? �Si11,n

1 JH

X
i

�Si,a ? �Si,b 1
X
i,n

Dnni,n , (10)

where n �� a, b� is the index of orbitals and JH is the
Hund’s-rule coupling. The energy level of orbitals is ex-
pressed as Dn . In the following, D denotes the energy-level
splitting Da 2 Db . In this model, the doubly occupied
state in an orbital is excluded. The number of electrons
N is taken to be larger than the number of unit cells
L. We calculate the thermopower and the resistivity r

���� L Tr�exp�2H�kBT����e2M11����. In Fig. 2, the results
are shown for various D as functions of temperature in the
system with L � 6 and N � 10. In the calculation, peri-
odic boundary condition is used. The resistivity shows the
linear temperature dependence but is almost independent
of D. On the other hand, the thermopower decreases with
increasing D and depends on temperature monotonously
up to D � kBT .

Let us examine these behaviors at high temperatures
�t ø kBT �. As shown by Chaikin and Beni [4], the
contribution from the first term in the expression of the
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FIG. 2. Thermopower and resistivity in the model given by
Eq. (10) with L � 6 and N � 10 in periodic boundary condi-
tion. J�t � 0.25 and JH�t � 210 are used.
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thermopower Eq. (2) is small at high temperatures. We
introduce the entropy s written as s � kB lng where g
denotes the degeneracy of high-temperature states. Using
the relation between chemical potential and entropy, the
thermopower at high temperatures is given by

Q � 2
kB

e
≠ lng
≠N

. (11)

Our next task is to calculate the degeneracy g. In the model
given by Eq. (10), there are two kinds of sites, since each
site has two orbitals: one of the orbitals is occupied by an
electron and both orbitals are occupied by electrons. We
denote the sites as (I) and (II), respectively. Therefore, g
is given by the total number of ways of arranging the two
kinds of sites and the internal degree of freedom of the
sites:

g � �g�I��2L2N �g�II��N2L L!
�N 2 L�! �2L 2 N�!

, (12)

where g�I� and g�II� are the degeneracies of the sites (I) and
(II), respectively. Using Stirlings approximation, Eq. (11)
is expressed as

Q �
kB

e
�lng�I� 2 lng�II�� 2

kB

e
ln

µ
x

1 2 x

∂
, (13)

where x � 2 2 N�L. The degeneracies g�I� and g�II�
originate from spin and orbital degrees of freedom and de-
pend on temperature. First, let us consider the case that
t, D ø kBT ø JH . In this case, on site (I), an electron
is distributed to both orbitals and g�I� is estimated to be
4 due to the spin and orbital degrees of freedom. On
the other hand, on site (II), two electrons form a spin-1
state. Therefore, we obtain g�II� to be 3. As the energy-
level splitting D increases, an electron on site (I) tends
to occupy the stable orbital. In other words, the contri-
bution of the orbital degree of freedom to g�I� decreases
with increasing D. It is expected that the suppression of
g�I� causes the decrease in the thermopower through the
first term in Eq. (13). In Fig. 3, the D dependence of the
thermopower is shown as a function of temperature up to
kBT�t � 20. The dotted line indicates the value given by
Eq. (13) for g�I� � 4, g�II� � 3, and x � 2 2 10�6. We
find that the maximum value of the thermopower is ob-
tained at kBT � D and approaches the dotted line with
decreasing D. For kBT * D, the thermopower decreases
with increasing temperature. This behavior is also un-
derstood by Eq. (13). In the case that t, D, JH ø kBT ,
the ferromagnetic coupling JH does not play any role, so
that the spin of each electron contributes to the degener-
acy g�II� on site (II). As a result, g�II� is 4. The broken
line in Fig. 3 shows the value obtained from Eq. (13) for
g�I� � 4, g�II� � 4, and x � 2 2 10�6. The numerical
results show that the thermopower at high temperatures
�t, D, JH ø kBT� approaches this value with increasing
temperature. Because the high-temperature value of the
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FIG. 3. Thermopower in the model given by Eq. (10). The pa-
rameters are the same as those in Fig. 2. The dotted and broken
lines are the high-temperature values of thermopower Eq. (13)
for t, D ø kBT ø JH and t, D, JH ø kBT , respectively.

thermopower at t, D, JH ø kBT is smaller than that at
t, D ø kBT ø JH , the thermopower shows maximum at
kBT � D.

The effect of spin and orbital degrees of freedom on
thermopower is understood as follows. Suppose that the
site (II) is on the site i and the site (I) is on the site i 1 1.
Let an electron move from i to i 1 1. Then, the sites i and
i 1 1 become (I) and (II), respectively. In the process, the
charge 2e moves from i to i 1 1 and the degeneracy ex-
changes between the neighboring sites, i.e., g�I� and g�II�.
Thus, we obtain Eq. (13). The energy-level splitting D af-
fects the amount of moved degeneracy but not the amount
of moved charge. Therefore, the thermopower strongly de-
pends on D but the resistivity is not much affected by D

as seen in Fig. 2.
Let us apply our theory to the thermopower in NaCo2O4.

In the cobalt oxide, the transport is governed by 3d elec-
trons in cobalt ions. Since the average valence of a cobalt
ion in the stoichiometric compound is 13.5, the ratio of
Co31 and Co41 ions is one, i.e., x � 0.5. The motion of
an electron between neighboring Co31 and Co41 ions is
accompanied with the change of ionic configuration from
Co31-Co41 to Co41-Co31. The Co31 and Co41 ions are
identified with sites (II) and (I), respectively. Therefore,
the high-temperature value of the thermopower is obtained
by Eq. (13) with the degeneracies of Co31 and Co41 ions.
It has been observed [13,14] that in the compound, Co31

and Co41 ions have the electronic configuration t6
2g and

t5
2g, respectively. These electronic configurations suggest

that the degeneracies are 1 and 6 for Co31 and Co41

ions, respectively. Inserting these degeneracies into g�I�
and g�II�, respectively, and using x � 0.5, Eq. (13) gives
154 mV�K for the high-temperature value of the ther-
mopower. Because the last term in Eq. (13) vanishes for
x � 0.5, we conclude that the large thermopower in this
compound is given by spin and orbital degrees of freedom.

Let us discuss a possibility of new thermoelectric materi-
als in the transition metal oxides. We note the following re-
markable features in NaCo2O4, namely, (i) the cobalt sites
236603-3
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form a triangular lattice, and (ii) the Co-O-Co bond angle is
about 90±: Our theory shows that spin and orbital degrees
of freedom cause the large thermopower through the de-
generacy. In the transition metal oxides, however, there ex-
ist electron-phonon and superexchange interactions. These
interactions are responsible for the long-range order in the
spin and orbital degrees of freedom. They lift the spin
and orbital degeneracy even at higher temperatures than
the critical temperature of the long-range order forming
a short-range correlation. The effects are considered to
be harmful for the thermopower induced by the degener-
acy, especially in the bipartite lattices. However, the tri-
angular lattice gives frustration to spin and orbital degrees
of freedom. The frustration prevents the electron-phonon
and superexchange interactions from lifting the degener-
acy. Thus, the triangular lattice structure is advantageous
to the thermopower induced by the degeneracy. Although
the effect of spin and orbital degrees of freedom on the
thermopower has also been observed in some other doped
transition metal oxides, the effects are smeared out with
increasing hole concentration [15,16]. This is because the
Coulomb interaction is less important in heavily doped sys-
tems than that in lightly doped ones. In order for spin and
orbital to act as internal degrees of freedom on the ther-
mopower, the strong Coulomb interaction �U� must exist
on each site. The layered-hexagonal structure of NaCo2O4
with the Co-O-Co bond angle of about 90± provides the
narrow electron band width �W� [17]. As a result, the pa-
rameter U�W is enhanced. Other layered-hexagonal cobalt
oxides with large thermopower [18–21] satisfy the condi-
tions. This is in strong contrast with the conventional guid-
ing principle of thermoelectric materials [1,2]. Small angle
of M-O-M bond (M denotes transition metal ion), narrow
band, strong correlation of electrons, and frustration are
the key ingredients to obtain thermoelectric materials in
transition metal oxides.

In summary, we have studied the thermopower in
strongly correlated electron systems with orbital degen-
eracy. By using the numerical diagonalization method
on finite-size cluster, it was shown that the thermopower
is strongly enhanced by the spin and orbital degeneracy,
but the resistivity is not much affected by the degeneracy.
The numerical method may be applied to the lower
temperature region by using finite-temperature Lanczos
method developed by Jaklič and Prelovšek [11]. Key
ingredients to obtain thermoelectric materials in transition
metal oxides have been proposed.
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