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Electrical Magnetochiral Anisotropy
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Electrical conductors can be chiral, i.e., can exist in two forms where one is the other’s mirror image.
Thus far, no effect of chirality on magnetotransport has been observed. We argue that the electrical resis-
tance of any chiral conductor should depend linearly both on the external magnetic field and the current
through the conductor and on its handedness. We suggest two mechanisms to carry this effect and show
experimentally on model systems that both are effective.
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Quite recently, a new polarization-independent optical
effect was discovered; magnetochiral anisotropy (MCHA)
[1–3]. On the basis of symmetry arguments, it was shown
that an extra term exists in the dielectric constant of a chiral
(from the Greek x´ir � hand) medium which is propor-
tional to k ? B, where k is the wave vector of the light
and B is the external magnetic field [4,5]. Additional fea-
tures of MCHA are the dependence on the handedness of
the chiral medium and the independence of the polariza-
tion state of the light. The symmetry arguments used for
the optical case may also be applied to the case of electri-
cal transport, and the question naturally comes to mind if
an analogous effect exists for electronic magnetotransport
in chiral conductors. In this Letter we show both theo-
retically and experimentally that electrical magnetochiral
anisotropy (EMCHA) indeed exists, and we identify and
demonstrate two microscopic mechanisms that cause such
an effect.

An electrical conductor may be chiral because of sev-
eral reasons. The material may crystallize in a chiral space
group, such as tellurium or b-manganese [6], or be com-
posed of chiral subunits such as chiral conducting poly-
mers [7], DNA molecules [8,9], and Langmuir-Blodgett
films [10] or vapors [11] of chiral molecules. Even if the
material itself is nonchiral, it may still be formed into a
chiral shape, similar to a helix. In all these cases, the con-
ductor can exist in two forms, each of which is the mirror
image of the other and which we shall call right �D� or
left �L� handed. In some chiral conductors, spin-polarized
electronic transport has been studied [10,11] and effects
similar to natural circular dichroism in optical absorption
have been observed. Note that spin polarization is not syn-
onymous with chirality, as spin polarization, as any form of
magnetization, is odd under time reversal and even under
parity reversal. Only particles having a nonzero drift veloc-
ity and a longitudinal angular momentum are chiral [12].
As charged particles in a magnetic field acquire angular
momentum due to their cyclotron motion, charge carriers
moving parallel to the magnetic field fulfill this condition
and form a chiral system.
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Onsager was the first to consider the symmetry proper-
ties of kinetic coefficients [13]. (For a discussion, see, e.g.,
[14,15].) He showed that, for a generalized transport co-
efficient sij (e.g., the electrical conductivity tensor), close
to thermodynamic equilibrium one can write

sij �
Z 0

2`
�yi�0�yj�t�� dt � s

y
ji , (1)

where y denotes time reversal and the yi denote micro-
scopic parameters describing the system. If yi and yj

have the same time-reversal symmetry, one finds sij�B� �
sji�2B�. This is equivalent to the statement that any
two-terminal resistance can have only an even magnetic
field dependence [16]. The frequently employed term “lin-
ear magnetoresistance” [17] refers in fact always to a mag-
netic field dependence where R varies linearly with B
for large B, but which is still even in B. In chiral sys-
tems, symmetry allows all microscopic properties to have,
in principle, an odd dependence on the wave vector k
of the moving particles [18]. (The only symmetry al-
lowed k dependence in nonchiral systems is even.) As the
wave vector is also odd under time reversal, Eq. (1) gives
sij�k, B� � sji�2k, 2B�. More specifically, we find

sij�k ? B� � sji�2k ? 2B� � sji�k ? B� , (2)

and so there are no time-reversal symmetry objections
against a linear dependence of sii, and therefore of any
two-terminal resistance, on k ? B. The claims that a
two-terminal resistance should always be even in the ap-
plied magnetic field [16] are based on an incomplete view
of the basic Onsager relation Eq. (1), neglecting the sym-
metry properties of the wave vector. As �k� ~ J, the
electrical current density, we therefore conjecture that the
two-terminal electrical resistance of a chiral conductor sub-
ject to a magnetic field B is of the form

RD�L��k�, B� � Ro�1 1 bB2 1 xD�LI ? B� , (3)

where I is the electrical current, and parity reversal sym-
metry requires that xD � 2xL. Therefore such a I ? B
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term can exist only for chiral conductors. The parameter
b describes the normal magnetoresistance that is allowed
in all conductors (we neglect higher even orders in B that
are also allowed). We call the effect corresponding to the
linear B dependence in Eq. (3) electrical magnetochiral
anisotropy, in direct analogy to the optical case. The exis-
tence of this effect is the direct consequence of the simul-
taneous breaking of time-reversal symmetry by a magnetic
field and of parity by chirality and is therefore fundamental
and universal. The magnetic field dependence of EMCHA
is strictly linear, including the sign of B. Below we will
discuss two microscopic mechanisms that may determine
the magnitude of MCHA, namely, chiral scattering and the
magnetic self-field.

As explained above, a longitudinal external magnetic
field will make moving charge carriers chiral. In a chi-
ral medium, scatterers such as crystal defects, phonons,
or other charge carriers will, in general, be chiral. The
scattering probabilities of the chiral charge carriers will be
dependent on the relative handedness of these carriers and
the scatterers. This will combine to a magnetically induced
change in the carrier scattering rate in a chiral conductor,
and therefore lead to a change of its electrical resistance.
Such a mechanism was considered in Refs. [19,20] for the
scattering of free electrons by chiral molecules in a mag-
netic field. Indeed a difference in scattering rate propor-
tional to k ? B between D and L molecules was calculated.
Below, we will show that, in a solid state conductor into
which chiral scattering centers are induced, EMCHA can
be observed experimentally.

The second microscopic mechanism is based on the
magnetic self-field. In general, a current carrying chiral
conductor will possess a magnetization, the sign of which
depends on the direction of the current and the handedness
of the conductor. An analogous magnetization has been
predicted for the propagation of unpolarized light in chiral
media [21]. Consider a nonchiral material, the resistivity
of which is given by r�B� � r0�1 1 bB2�. A D or L
helix made of this material, carrying a current I, will gen-
erate an axial magnetic field at the position of the charge
carriers Ba � aD�LI, where aD�L depends on the geome-
try of the helix, and aD � 2aL. If an external field Bext
is applied parallel to the helix axis, the charge carriers in
the conductor feel Bext 1 Ba. It is easily seen that the re-
sistance of such a helix is given by

RD�L�I, Bext� � Ro�1 1 bB2
ext

1 2aD�LbIBext 1 O�I2�� . (4)

So, although the resistance is an even function of the total
magnetic field, for a chiral conductor, due to the self-field,
a term linear in the external magnetic field and the cur-
rent exists. This term describes EMCHA. Equation (4),
although certainly an oversimplification for a microscopic
chiral conductor, illustrates that, for this self-field mecha-
nism to be strong, conductors with a large quadratic mag-
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netoresistance are favorable. Promising microscopic chiral
conductors to investigate would be chiral nanotubes, for
which a large magnetoresistance was observed [22] and a
strong current induced axial magnetic field was calculated
[23]. Unfortunately, thus far no control over the chirality
of nanotubes has been obtained and an experiment to test
Eq. (4) on such conductors has to await further progress
in this area. However, a metallic helix can be regarded as
a simplified macroscopic model of a chiral molecule with
given chirality. This has been demonstrated for the opti-
cal properties by Tinoco [24]. We have used such helices
to study experimentally the self-field effect as a source for
EMCHA. 99.999% bismuth was used as the wire material,
as it has high b values, in particular at low temperature
[25]. We have fabricated helices by injecting molten bis-
muth into helical molds, followed by annealing. The axial
magnetic self-field, averaged over the cross section of the
conducting part of such a helix, can be easily calculated by
means of finite element methods [26]. Typical values of a
for our helices are 0.5 mT�A. We perform two-terminal
resistance measurements because four-terminal measure-
ments may be affected by off-diagonal, Hall-like resistivity
tensor components, induced by geometrical imperfections,
that are also odd in the magnetic field and the current.
As the contact resistances are found to be very low, the
two-terminal method measures the truly dissipative re-
sistivity of the helices. The two-terminal magnetochiral
anisotropy of these helices was experimentally determined
as DR�I, Bext� � R�I,Bext� 2 R�2I,Bext� by means of
standard phase-sensitive detection techniques. Figure 1
shows this magnetochiral anisotropy DR for a D and a
L helix of the same dimensions, as a function of mag-
netic field, at 300 and 77 K. Clearly a linear magnetore-
sistance is found, and of opposite slopes for the opposite
handedness. To our knowledge, this is the first time that a
truly linear two-terminal magnetoresistance has been ob-
served. Also shown are the theoretical predictions based
on Eq. (4) and the calculated a and measured b values.
Good agreement in sign and magnitude is obtained with
the experimental results. At higher fields, the observed
field dependence becomes nonlinear. This is due to irre-
versible plastic deformations of the helices by the Lorentz
force, which at even higher fields resulted in breaking of
the helices. Figure 2 shows the angular dependence and
the current dependence of the EMCHA, which are also in
good agreement with Eq. (4). Our experimental findings
on macroscopic chiral conductors therefore quantitatively
verify the self-field mechanism as a source for EMCHA in
electronic transport. The self-field effect will be operative
at all length scales and will therefore induce EMCHA in all
chiral conductors that show quadratic magnetoresistance.

We have experimentally studied the chiral scattering
mechanism as a source of EMCHA by measuring the
two-terminal resistance of straight bismuth wires contain-
ing screw dislocations. (Two-terminal resistance was mea-
sured for the same reason as for the case of the helices.)
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FIG. 1. Two-terminal magnetochiral resistance anisotropy
DR�I, Bext� � R�I , Bext� 2 R�2I , Bext� of D (squares) and L
(triangles) bismuth helices (seven turns, 8 mm diameter, and
0.8 mm pitch) with I � 0.2 A, as a function of the external
magnetic field Bext, at 300 K (top, Ro � 0.9 V) and 77 K
(bottom, Ro � 0.2 V). The solid lines are the predictions based
on Eq. (4) where an arbitrary vertical offset was incorporated
to account for small asymmetries in contact resistances and
electronics. We call a helix “D” if it has the same handedness
as a normal screw.

The wires were prepared in similar ways as the helices and
subsequently subjected to a torsional deformation. Typi-
cal lengths were 1 cm and typical distortions were ef-
fected by rotating one wire end around the wire axis over
15±, which resulted in an increase of the 300 K resistance
by approximately 5%. Such a treatment introduces screw
dislocations into the wire, predominantly of one handed-
ness. These dislocations will act as chiral scattering centers
[27]. Figure 3 shows a typical result for the magnetochiral
anisotropy of wires subjected to a L and to a D distortion.
Clear EMCHA is observed, of opposite sign for the oppo-
site handedness of torsion. Also shown is that the same L
wire no longer shows EMCHA after it has been annealed
for 24 h at 265 ±C, close to its melting point. After this
treatment, the zero-field resistance has returned to its value
236602-3
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FIG. 2. Top panel: Angular dependence of the magnetochiral
resistance anisotropy of the D bismuth helix from Fig. 1. u is
the angle between external magnetic field and helix axis. Solid
line is a fit to a cosine dependence. Bottom panel: Current
dependence of the magnetochiral resistance anisotropy of the D
helix at u � 0.

before distortion to within 1%, which proves that most of
the screw dislocations have disappeared. Consequently,
the EMCHA must vanish, in agreement with our observa-
tion. For other wires investigated, the magnitude of the
observed effect differed from that in Fig. 3 by up to an or-
der of magnitude. This is to be expected as the number of
screw dislocations introduced by our torsional deformation
is unknown and may vary strongly between samples. Fur-
thermore, the magnetoscattering of electrons by screw dis-
locations inside solids has never been studied previously.
This makes a quantitative evaluation of the effect impos-
sible at this stage. However, the sign of the magneto-
resistance always corresponded to the handedness of the
distortion. This proves that scattering of charge carriers
by chiral objects in a magnetic field causes EMCHA, in
agreement with the predictions for the molecular case by
Pospelov [19] and Mussigman et al. [20].

Thus far we have considered only diffusive conductors.
For ballistic conductors, one can easily show by direct
application of time- and parity-reversal symmetry argu-
ments that the carrier transmission probability, and there-
fore the electrical resistance, may also show EMCHA.
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FIG. 3. Two-terminal magnetochiral resistance anisotropy dif-
ference DR�I , Bext� 2 DR�I , 2Bext� of D and L distorted bis-
muth wires with a length of 10 mm, a diameter of 0.5 mm,
and I � 0.2 A, at 77 K Also shown is the behavior of the L
wire after annealing. Typical zero-field resistance of the wires
is 20 mV. The inset shows the geometry of our experiment.

Equation (3) will therefore also apply to ballistic conduc-
tors. Quantum transport calculations using the simplest
possible model, namely, a free electron on a helix in a
magnetic field, show that for both ballistic and diffusive
conductors EMCHA occurs in their two-terminal resis-
tance [28].

Our experimental results confirm the validity of our con-
jecture of Eq. (3) and prove the existence of electrical mag-
netochiral anisotropy in chiral conductors. This effect is
fundamental and universal, and should manifest itself in
all chiral conductors, ranging from molecules to macro-
scopic objects. We have identified and demonstrated two
mechanisms leading to EMCHA, but these may not be
the only ones. Although the effects observed thus far are
quite small, they may, in principle, be interesting for spin-
tronics, as they imply that, in chiral conductors, electrical
resistance depends not only on the magnitude of spin po-
larization, but also on its direction. Because of the univer-
sal nature of Eq. (2), one may also expect MCHA in other
transport phenomena involving the movement of charge
in chiral media, such as ion diffusion or heat conduction.
In particular, in analogy with the recently reported enan-
tioselective magnetochiral photochemistry [29], one may
expect that MCHA in electrochemistry in a magnetic field
can lead to enantioselectivity.

We gratefully acknowledge B. van Tiggelen and G. Wag-
nière for stimulating discussions and A. G. M. Jansen and
G. Martinez for critical reading of the manuscript. The
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