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Recent experimental discovery of extended self-similarity (ESS) was one of the most interesting de-
velopments, enabling precise determination of the scaling exponents of fully developed turbulence. A
sufficient condition for extended self-similarity in a general dynamical system is derived in this paper.
It is also shown that if the pressure-gradient contributions are expressed in terms of velocity differences
in the mean-field approximation [V. Yakhot, Phys. Rev. E 63, 026307 (2001)], then the ESS is a conse-
quence of the Navier-Stokes equations.
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Scaling relations for velocity structure functions in
isotropic and homogeneous turbulence are defined as
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where u and y are components of velocity field parallel
and perpendicular to the displacement vector r, respec-
tively. The universality assumption implies the coeffi-
cients cn,m � O�1�, independent of the Reynolds number
(dissipation scale h � LfRe23�4). The dissipation rate
§ � �≠iuj�2 � const � O�1� is equal to the power of ex-
ternal kinetic energy pumping. The shape of the structure
functions (1) is an assumption, not following any rigorous
theory. In the inertial range � r

Lf
! 0, r

h ! `� the scal-
ing functions fnm�r� ! an,m � const, independent of the
displacement r.

Both physical and numerical experiments show that the
functions fn,m start deviating from the constant inertial
range values at r�h � 10. Since one does not have theo-
retical expressions for fn,m, accurate measurements of ex-
ponents jn,m in a fully developed turbulent flow requires
an extremely wide range of variation of the displacement
r which is possible only if the Reynolds number of a flow
is huge. This problem is even more severe for numerical
simulations of turbulence, where usually the wide inertial
range is difficult to generate. It has been shown in a re-
markable paper by Benzi et al. [1] that even in the medium
(quite low, actually) Reynolds number flows, where (1)
is hard to observe, the following relation [extended self-
similarity (ESS)] holds:

Sn,0�r� � Cn,mSm,0�r�b�n,m�, (2)

where b�n,m� �
jn

jm
. It is clear from (1) that if cn,m are

Reynolds number independent, then the coefficients Cn,m
in (2) do not depend on the dissipation scale h (Reynolds
number). Since the range of validity of expression (2) is
much wider than that of (1), accurate determination of ex-
ponents b�n, m� enables one to evaluate the exponents jnm
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even in the not-too-high Reynolds number flows. Compari-
son of the exponents calculated this way with those mea-
sured in extremely high Re flows �b�n, m� � jn,0�jm,0�
was usually extremely good [2]. Since its discovery the
relation (2) evolved into a major tool for experimental and
numerical determination of the exponents jnm [1–5]. The
definition (2) was introduced and tested in Ref. [3]. Since
S3,0 ~ r in the inertial range, it is typically used in appli-
cation of the ESS (2) for analysis of experimental data. It
is shown below that extended self-similarity (2) can be de-
rived self-consistently from the Navier-Stokes equations.

The following well-known relations will be useful
below [6–7]:

dS2,0�r�
dr

� �d 2 1� �S0,2�r� 2 S2,0�r�� , (3)

6S1,2�r� �
d���rS3,0�r����

dr
, (4)

and

S3,0 � 20.8r 1 6n
dS2,0

dr
. (5)

The relation (3) is purely kinematic, reflecting properties
of the divergence-free, statistically homogeneous fields.
The dynamic relations (4) and (5) are the consequences
of the Navier-Stokes equations for an incompressible, sta-
tistically homogeneous flow. The relation (3) involves only
even-order moments only. The importance of (3)–(5) for
what follows is that they couple S2,0 and S0,2 with S3,0
and S3,0. It has been shown recently that in a statisti-
cally isotropic, homogeneous, and incompressible flow,
governed by the Navier-Stokes equations, the following
equation can be rigorously derived in the limit r�Lf ! 0
where the forcing function can be neglected [8]:
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1

d 2 1
r
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�d 2 1� �2n 2 1�

r
S2n22,2 �

2�2n 2 1�Px,2n22 1 �2n 2 1�nDu,2n22, (6)

where

Px,2n22 � �px 0�x0� 2 px�x�� �Du�2n22 , (7)
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px � ≠xp�x, y,x�, and

Du,n � �=2u�x 0� 2 =2u�x�� �Du�n . (8)

These relations are exact even in the low-Reynolds-
number statistically isotropic and homogeneous flows in
the range r�Lf ! 0. The relations (6)–(8) can be viewed
as a dynamic generalization of (3). Indeed, the left side of
(6) is similar to the kinematic relation (3): the dynamics
enters exclusively through pressure and the dissipation
contributions. The dissipation term Du,2n�r� � O�1� and,
thus, nDu,2n ! 0 as n ! 0 in the inertial range. To prove
this statement, we consider

�2n 2 1�nDu,2n22 � 2�2n 2 1� �2n 2 2�
3 �§u�2� 1 §u�1�� �Du�2n23

1 n≠2
rS2n21,0�r� , (9)

where §u � n�≠u�2. The second term in (9) disappears in
the inertial range in the limit n ! 0. To estimate the first
contribution, we write neglecting the subscript u

�§�2� 1 §�1�� �Du�2n23 #

q
�§�1� 1 §�2��2S�4n26��2�r� .

(10)

Since in the inertial range �r ! 0�, �§�1� 1 §�2��2 ~ r2m

with m � 0.2, this term is negligibly small compared to the
O�S2n,0�r� contributions to (3) for not too small moment
number n, provided j2n,0 “bends” strongly enough with n.

The fact that in the inertial range the dissipation con-
tributions to (6) can be neglected does not mean that the
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even-order structure functions are not affected by the dis-
sipation processes. Equation (6) is not closed and, as a re-
sult, the even-order moments are coupled to the dissipation
contributions appearing in the equations for the odd-order
moments. This will be discussed below.

To close the relation (6) one needs expressions for the
pressure-velocity correlation functions. The mean-field
approximation, introduced in [8], is a statement that
the pressure-gradient difference is expressible in term
of a quadratic form of velocity differences. Since
�Dpy�Du�2� � �Dpy�Dy�2� � 0, we are left with

Dpx �
a�Du�2 1 b�Dy�2

r
1 c

d
dr

�Du�2 1 . . . . (11)

The coefficients a, b, c, etc., are chosen so that Dpx �
DpxDu � DpxDy � 0. We also have (see [8]) Dpy ~

DuDy�r.
The mean-field approximation (11) for the pressure op-

erator is the only expression, not involving noninteger
powers of the displacement r and noninteger-order deriva-
tives dg�drg, thus consistent with the Navier-Stokes equa-
tions. Realizing that this is a mere plausibility argument
in favor of (11), it is gratifying to notice that this approxi-
mation leads to homogeneous equations for the structure
functions, opening a possibility of anomalous scaling. Re-
cent experimental data [4] gave a reasonably good support
to the mean-field approximation.

Let us assume that S2n � S2n�S2m� where m is an arbi-
trary number. This assumption is nontrivial since, in prin-
ciple, the moment S2n can also depend on the displacement
r and dissipation scale h (Reynolds number). Substituting
this into (6) gives
≠S2n,0

≠S2m,0
�

�d 2 1�S2n,0 2 �d 2 1� �2n 2 1�S2n22,2 1 �2n 2 1�rPx,2n22 2 �2n 2 1�nrDu,2n22

�d 2 1�S2m,0 2 �d 2 1� �2m 2 1�S2m22,2 1 �2m 2 1�rPx,2m22 2 �2m 2 1�nrDu,2m22
. (12)
The relation (2) holds if the right side of (12) is equal to
j2n,0S2n,0

j2m,0S2m,0
. Again, the relations (12) are exact everywhere as

long as r�Lf ! 0.
Equations (6) and (12) are not closed since we do not

have the relations coupling S2n,0 with S2n22,2. We know
that in the dissipation range, r�h ! 0, the functions
S2n,0 ~ S2n22,2, and j2n,0 � 2n, while in the inertial
range the correlation functions are characterized by the
nontrivial exponents (1). In principle, based on [8], we
can easily write equations for S2n22,2. However, they
involve the correlation functions S2n24,4, etc.
Now we ask a central question: Consider a relatively
low Reynolds number flow, so that the dissipation contri-
butions to (6) and (12) cannot be neglected and the func-
tions f2n,0�0, r

h � vary with the displacement r. What is the
structure of the theory preserving (2) but strongly violat-
ing the inertial range scaling S2n,0 ~ rj2n,0? At the top of
the dissipation range r�h � 1 10 the scaling functions,
violating the inertial range scaling are not small [see (1)].
For 2m � 2 Eq. (12) simplifies to
≠S2n,0

≠S2,0
�

�d 2 1�S2n,0 2 �d 2 1� �2n 2 1�S2n22,2 1 �2n 2 1�rPx,2n22 2 �2n 2 1�nrDu,2n22

�d 2 1� �S2,0 2 S0,2�
, (13)
where, by virtue of (3), in incompressible, isotropic,
and homogeneous turbulence �d 2 1� �S0,2 2 S2,0� �
2r

dS2,0

dr . Both dissipation and pressure contributions do
not appear in the denominator of (13). The relation (13)
is possible only in an interval where the numerator in (13)
is equal to 2r

dS2n,0

dr .
Substituting this into (13) and using the scaling form

(1) gives
234501-2



VOLUME 87, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 3 DECEMBER 2001
≠S2n,0
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�
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1 1
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1 1
x
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.

(14)

By assumption, S2n � S2n�S2�, subject to “boundary con-

dition” S2n,0 � C2n,2S
j2n,0�j2,0

2 as x ! `. Solution to (14),

satisfying these constraints, is f2n,0 ~ f
j2n,0�j2,0

2,0 . Indeed,
substituting this into the second Eq. (14), we are left with
the differential equation, equivalent to the ESS (2) with the
Reynolds-number-independent coefficient C2n,2. One can
see that the ESS is the only universal solution to Eq. (14),
not involving any dependence on the Reynolds number
�h�. This result, which is a sufficient condition for the
ESS, is independent of the model for the dissipation and
pressure contributions.

In the inertial range, where the power laws for the struc-
ture functions are assumed to be valid, the dissipation
contributions are negligibly small. In this range the nu-
merator of Eq. (13) is equal to 2dS2n,0�dr, possible only
if the mean-field approximations (11) were as accurate as
the power laws themselves. It is interesting that, accord-
ing to (6), the exponents j2n,0 and j0,2n with n . 1 are
not necessarily equal: the O�S2n22,2� contributions can
be canceled by the corresponding terms in the pressure
model (11).

The most-often-used expression for analysis of experi-
mental data is S2n,0 � S2n,0�S3,0�. To make a transition
we have to express f2,0 in terms of f3,0. The func-
tion f2,0�x� can be readily self-consistently found from
Eq. (5). The inertial range calculations [8] and both nu-
merical and physical experiments [2] give j2,0 � 0.7 and
f2,0�x� � a2,0 � 2.0 (Kolmogorov constant CK � 1.6).

Substituting the ESS expression S
j2,0

3,0 ~ S2,0 into (5) gives

6df2,0

dx
� �0.8 2 0.3f

1�j2,0

2,0 �x12j2 2 6j2f2,0�x , (15)

where by definition of the dissipation scale nh221j2 � 1
and § � 1. The solution to this equation gives f2,0�x�,
gently approaching a2,0 � 2 as x ! ` very close to the
experimental results by Dhruva et al. [9]. Noticeable de-
viations from this constant value start at x � 30 50 (at
x � 20 the function f2,0 � 1.65 1.7). A similar equa-
tion was derived by Benzi et al. (Ref. [3]).

Now we can discuss the cases where the ESS is vio-
lated. In a strongly sheared wall flow one can introduce two
Reynolds numbers. The first one is Re � UL�n where L
is the width of the channel (boundary layer, etc.) and U
is a characteristic (mean) velocity. The second one �Re �
u�L�n� is based on the friction velocity u2

� � 2n
≠U
≠y jwall.

The dissipation rate § � O�U3

L Re4
��Re3� is a weak func-

tion of the Reynolds number (dissipation) scale. Thus, all
structure functions, even if they can be written in a form
(1), must involve the Re-dependent proportionality coeffi-
cients. This violates the assumptions leading to the ESS
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(2). Far enough from the wall, where § � U3�L with the
Re-independent proportionality coefficient, one can expect
the ESS to be valid.

In some sheared flows 1�Ls �
≠u
≠y �u � O�1�, the scal-

ing functions also depend on y�Ls � 1. In these regions
the y�Ls cannot be neglected and the simple derivation
of the ESS (13) breaks down. The best example, illus-
trating this point, is the Kolmogorov flow driven by the
forcing function f � �0, cosLsx�. There we expect the
ESS to hold in the vicinities of zeros of the local strain
rate ≠xUy ~ sin�Lsx� and break down near local maxima
(minima) of the strain rate. These conclusions agree with
the experimental findings [10,11].

To conclude, a general statement, not related to a par-
ticular dynamical system, can be made (1) if the scaling
relation (1) with the O�1� coefficients cn,m is valid, and
(2) if Sn,0 � Sn,0�Sm,0� is independent on r and h, then

Sn,0 � Cn,mS
�jn,0�jm,0�
m,0 . This relation means that there exists

only one dominating (dynamically relevant) scaling func-
tion fi,j and all others can be calculated in a simple way.

It can be shown that in the interval x . 1, the di-
rect dissipation contribution to (13) is small. Then, the
mean-field approximation justifies the assumption S2m,0 �
S2m,0�S2,0�. This leads to the ESS.

It follows directly from the Navier-Stokes equations that
if the inertial range power laws exist, then

�d 2 1�S2n,0 2 �d 2 1� �2n 2 1�S2n22,2 1

�2n 2 1�rPx,2n22 � 2r
dS2n,0

dr
.

(16)

This expression means that the inertial range pressure con-
tribution to this equation must be O�S2n,0� or O�S2n22,2�.
This justifies the mean-field approximation (11).
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