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Statistics of Dynamics of Localized Waves
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The measured distribution of the single-channel delay time of localized microwave radiation and its
correlation with intensity differ sharply from the behavior of diffusive waves. The delay time is found to
increase with intensity, while its variance is inversely proportional to the fourth root of the intensity. The
distribution of the delay time weighted by the intensity is found to be a double-sided stretched exponential
to the 1�3 power centered at zero. The correlation between dwell time and intensity provides a dynamical
test of photon localization.
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Large fluctuations are a distinctive feature of transport
in quantum and classical mesoscopic systems. Though the
focus of mesoscopic physics in all its varieties has been
almost exclusively on steady-state propagation [1,2], it is
natural to view transport from a dynamical perspective.
Indeed, the fundamental dimensionless ratio in the study
of propagation and localization, the Thouless number d

[3], is the ratio of two dynamical parameters, the level
width dn and the level spacing Dn, d � dn�Dn. The
level width is the inverse of the Thouless time, which is
the transit time through the sample, and the level spacing
is the inverse of the Heisenberg time, which is the time
required to explore all coherence volumes of the sample.
The statics and dynamics of transport are closely related
since, in the absence of inelastic processes, d is equal to
the dimensionless conductance g [4], which is the inverse
of the degree of long-range intensity correlation [5–7].

Whereas static aspects of transport are associated with
the amplitude of the wave, dynamics is reflected in the
phase [8–11]. The single-channel delay time for a trans-
mitted pulse in mode b for incident mode a is the first
temporal moment of the pulse. In the limit of vanishing
pulse bandwidth, the single-channel delay time is given
by tab�v� � dfab�dv � f

0
ab , where fab is the phase

and v is the angular frequency [11]. The pulse transmis-
sion coefficient in this limit is equal to the static transmis-
sion coefficient or intensity Iab�v�. The configuration or
space-averaged delay time is obtained by weighting the de-
lay time with the intensity Wab � Iabf

0
ab . When averaged

over all input and output channels, this is the Wigner delay
time [10], which is proportional to the density of states.
In diffusive limit, the conditional probability distribution
of the single-channel delay time normalized to its en-
semble average, f̂0 � f

0
ab��f0

ab�, for fixed normalized
intensity, Î � Iab��Iab�, is a Gaussian with variance in-
versely proportional to Î [12,13]. Surprisingly, measure-
ments of the distribution and correlation function of the
single-channel delay time for diffusing microwave radia-
tion [12] were found to be in excellent agreement with
the theory, even in samples with a considerable degree of
long-range intensity correlation. But, the statistics of dy-
namics of localized waves must differ fundamentally from
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those for diffusing waves since the transmission spectrum
appears as a series of narrow spikes, reflecting the con-
dition dn , Dn. Unlike diffusive waves, for which the
delay time and intensity are uncorrelated [12], long de-
lay times for localized waves are associated with peaks in
the transmitted intensity, associated with resonant tunnel-
ing through localized states. Calculations of novel statis-
tics of dynamics in localized media have been carried out
for reflection of acoustic waves in 1D systems, such as
the earth’s crust [14], for reflected and transmitted electro-
magnetic waves in quasi-1D media [15,16], and for elec-
tron transport in a 1D potential [17]. Statistical aspects
of dynamics have also been considered in chaotic cavities
[18–22] and in nuclear and atomic scattering [10].

In this Letter, we present the first measurements of
the dynamic statistics of localized waves. The statistics
of dynamics of microwave radiation within a window of
localization in samples of randomly positioned dielectric
spheres are compared to those for extended waves in a
different frequency interval. We find that the distribution
of the single-channel delay time becomes markedly asym-
metric, while the distribution of the delay time weighted
by intensity becomes extraordinarily broad. It falls as a
stretched exponential to the power 1/3 instead of expo-
nentially, as predicted for diffusing waves. The average
normalized delay time at fixed intensity �f̂0�Î , which is
independent of Î for diffusive waves, is found to increase
with Î. At the same time, the decrease with intensity of
the variance of the normalized delay time is substantially
reduced. As a result, the delay time and intensity are cor-
related and afford a dynamical test for localization. The
deviations from diffusive behavior are consistent with
expectations for resonant transmission through localized
modes.

We have measured the microwave field transmission co-
efficient

p
Iab exp�ifab� in ensembles of randomly posi-

tioned alumina spheres. The amplitude
p

Iab and the phase
fab of the field at the output surface, referenced to the field
at the input surface, are obtained using a Hewlett-Packard
HP8722C vector network analyzer. Alumina spheres of
diameter 0.95 cm and dielectric constant 9.86 [23] are
contained in a 7.3-cm-diameter copper tube at a volume
© 2001 The American Physical Society 233903-1
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fraction of 0.068. This low density is achieved by embed-
ding the alumina spheres in 1.9-cm-diameter Styrofoam
spheres with dielectric constant 1.08. The measurements
are carried out in samples of length 49, 65, and 90 cm.

The degree of localization in these samples is given by
the variance of the total transmission normalized to its en-
semble average value var�sa�, where sa � SbIab��SbIab�
[23,24]. At a threshold value of order unity, var�sa�
crosses over from a monotonic increase for extended
waves to an exponential for localized waves, as the sample
length L increases [24]. Calculated values of var�sa�, as
well as measurements of scaling of var�sa� [24] and �Iab�
[25] with sample length in identical alumina samples,
have allowed us to establish that the wave is localized in a
narrow frequency range centered at f � 10 GHz, slightly
above the first Mie resonance of the alumina spheres.
Outside this range, the wave is extended. Here we
compare the dynamic statistics in the frequency interval
of 9.94–10.1 GHz, within the window of localization, to
those for extended waves in the interval of 16.9–17 GHz
near the fourth Mie resonance of the alumina spheres.
These frequency intervals are sufficiently narrow that
within them propagation parameters are nearly constant.

The probability distributions P�f̂0� of the normalized
single-channel delay time in a sample of L � 90 cm are
shown in Fig. 1. The ensemble-averaged values of f

0
ab

within the lower and upper frequency intervals are 122
and 120 ns, respectively. The values of var�sa� at these
frequencies are, respectively, 7.1 and 0.37, indicating that
radiation is localized in the lower frequency interval and
extended in the upper interval, though the intensity corre-
lation is high. The distribution P�f̂0� for extended waves
is compared to that in the diffusive limit [13],

P�f̂0� �
1
2

Q

�Q 1 �f̂0 2 1�2	3�2
, (1)

where the parameter Q is a function only of the ratio of L
and the diffusive absorption length La [13]. Measurements
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FIG. 1. Probability distribution of the normalized delay time
for extended (circles) and localized (squares) waves in a sample
of L � 90 cm. The curve is the distribution P�f̂0� in the diffu-
sive limit [13], given by Eq. (1) with Q � 0.215.
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of the scaling of �Iab� with sample length for extended
waves yield La � 21.3 6 1.6 cm [25], which translates
into Q � 0.215. This value is substituted in Eq. (1) to
produce the curve in Fig. 1. We note, however, that a fit
of Eq. (1) to the data using Q as a fitting parameter gives
Q � 0.249, which corresponds to La � 26.0 6 0.4 cm.
The underestimate of absorption, resulting from the fit of
Eq. (1), indicates the beginning of a breakdown of the
diffusion theory of [13], which is expected in strongly
correlated samples. In contrast, the normalized delay time
distribution for localized waves bears little resemblance to
the predictions of diffusion theory. It is asymmetrical and
reaches its peak at a value of f̂0 below its average value
of unity.

We find further that the conditional probability distribu-
tion PÎ�f̂0� for a fixed value of Î for extended waves is
well described by a Gaussian for any Î and L, in agree-
ment with the diffusion theory. The variation of �f̂0�Î and
var�f̂0�Î upon Î in a sample of L � 90 cm is shown in
Fig. 2. Whereas �f̂0�Î is, as expected, nearly independent
of Î (Fig. 2a), var�f̂0�Î shows a departure from the predic-
tion for diffusive waves of Q�2Î, for Î . 0.5 (Fig. 2b).
This is consistent with the deviation of the distribution
P�f̂0� for extended waves from diffusion theory, seen in
Fig. 1.

In contrast to the Gaussian distribution found for
extended waves, the conditional probability distribution
PÎ �f̂0� for localized waves exhibits an exponential falloff,
with an asymmetry in the distribution, which increases
with decreasing Î (Fig. 3). The variation of �f̂0�Î and
var�f̂0�Î with Î for different values of L is presented in
Fig. 4. As seen in Fig. 4a, �f̂0�Î markedly increases with
Î to an extent, which increases with L. The variation of

FIG. 2. Variation with Î of (a) �f̂0�Î and (b) var�f̂0�Î for ex-
tended waves for L � 90 cm. The lines in (a) and (b) are the
diffusive limits [13], �f̂0�Î � 1 and var�f̂0�Î � Q�2Î , respec-
tively, with Q � 0.215.
233903-2



VOLUME 87, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 3 DECEMBER 2001
−

FIG. 3. Conditional probability distribution PÎ�f̂0� for the val-
ues of Î of 0.04 (a), 0.4 (b), and 4.0 (c) for localized waves for
L � 90 cm.

var�f̂0�Î , seen in Fig. 4b, is even more striking. For all
sample lengths, we find that for Î . 0.5, var�f̂0�Î con-
verges to q��Î�1�4, with q � 0.4, shown as the line in
Fig. 4b. This universal behavior at large Î suggests a simi-
larity in the dynamics of localized and prelocalized states
[26]. For smaller values of Î, var�f̂0�Î becomes smaller
and falls more slowly with Î, as sample length increases.
For L � 90 cm, var�f̂0�Î � 0.4��Î�1�4 for any Î.

The probability distributions of the normalized weighted
delay time, bW � Wab��Wab �, for extended and localized
waves for L � 90 cm are compared in Fig. 5. The dashed
line is the predicted double-sided exponential distribution
in the diffusive limit [13], with Q � 0.215, found in the
upper frequency interval. The distribution for extended
waves, however, is seen to deviate significantly from dif-
fusion theory, indicating the sensitivity of this distribu-
tion to approaching localization. For localized waves, the

slope of -1/4
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FIG. 4. Variation with Î of (a) �f̂0�Î and (b) var�f̂0�Î for lo-
calized waves for L � 49 cm (squares), 65 cm (triangles), and
90 cm (diamonds). The line in (b) is var�f̂0�Î � q��Î�1�4, with
q � 0.4.
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FIG. 5. Probability distribution of the normalized weighted de-
lay time for extended (squares) and localized (circles) waves
for L � 90 cm. The dashed line is the distribution P� bW � in
the diffusive limit [13], with Q � 0.215. The solid line is the
model distribution, P� bW � � a exp�2bj bW j1�3�, with a � 0.44
and b � 2.42 for bW . 0, and a � 0.07 and b � 5.50 for
bW , 0.

distribution is considerably broader. It is well approxi-
mated by a double-sided stretched exponential, P� bW� �
a exp�2bj bWj1�3�, with a � 0.44 and b � 2.42 for bW .

0, and a � 0.07 and b � 5.50 for bW , 0, shown as the
solid line in Fig. 5. The distribution of bW is wider than
that of Î, reflecting the enhanced probability of long dwell
times and the increased variance of dwell times at large
values of the intensity for localized waves.

We have previously shown that var�Î�, as well as var�sa�,
serve as indicators of localization, even in the presence of
absorption [23,24]. We find that the interaction between
dynamic and static statistics associated with f̂0 and Î ,
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FIG. 6. Dimensionless ratio �Îf̂0� � �Iabf
0
ab���Iab� �f0

ab� ver-
sus frequency for L � 80 cm. The dashed line corresponds to
the value of unity of this ratio in the diffusive limit [13]. The
dotted line represents the condition, �Îf̂0� � 1.1, which corre-
sponds to the localization criterion, var�Î� � 7�3 [23]. The peak
above this line indicates the window of localization. The fre-
quency intervals used in computing the statistics for localized
and extended waves in Figs. 1–5 are marked by vertical lines.
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respectively, may also be used to identify the range
of localization. The correlation between Î and f̂0

can be expressed as the dimensionless ratio �Îf̂0� �
�Iabf

0
ab���Iab� �f0

ab�. The frequency variation of this
ratio in a sample of L � 80 cm is plotted in Fig. 6. It
is unity in the diffusive limit, since PÎ �f̂0� is then a
Gaussian centered at �f̂0�Î � 1, and rises above unity, as
localization is approached. The variation with frequency
of �Îf̂0� follows closely that of var�Î� (see Fig. 2c of
[23]). The localization threshold, at which var�Î� � 7�3
[23], corresponds to the condition �Îf̂0� � 1.1, shown as
the dotted line in Fig. 6.

In conclusion, we find striking differences between the
statistics of dynamics of localized and extended waves.
Characteristic features of the statistics of localized waves
are an increasing average delay time with intensity, an
asymptotic decay of the variance of the delay time propor-
tional to 1��Î�1�4, and a double-sided stretched exponential
distribution of the weighted delay time. These features re-
flect transport via resonant coupling to isolated localized
states. We expect that the distinctive and complex behav-
ior observed is characteristic of electron transport as well
as of propagation of all varieties of classical waves.
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