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It is shown that discrete solitons can be navigated in two-dimensional networks of nonlinear waveguide
arrays. This can be accomplished via vector interactions between two classes of discrete solitons: signals
and blockers. Discrete solitons in such two-dimensional networks can exhibit a rich variety of functional
operations, e.g., blocking, routing, logic functions, and time gating.
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Discrete solitons in nonlinear lattices have been the fo-
cus of considerable attention in diverse branches of sci-
ence [1–5]. These solitons are possible in several physical
settings such as, for example, biological systems [1], non-
linear optics [2], solid state physics [3], and Bose-Einstein
condensates [4]. In optics, discrete solitons were first pre-
dicted in nonlinear waveguide arrays in 1988 [2] and were
successfully observed a decade later [5]. In this system,
discrete localized states are possible by balancing the effect
of discrete diffraction (arising from the coupling between
neigboring waveguides) with that of material nonlinearity.
As pointed out in a number of studies, optical discrete soli-
tons differ fundamentally from their bulk counterparts in
several ways [6–9]. For example, a unique property that
follows from the discrete nature of waveguide arrays is that
of reverse diffraction; this leads to the exciting possibility
of observing dark solitons in self-focusing Kerr media [10].

The prospect of using discrete solitons (DSs) in single-
row (linear) waveguide arrays for data processing applica-
tions has been raised. However, by their very nature (i.e.,
because of their one-dimensional topology), the function-
ality of linear waveguide networks for signal manipulation
purposes is considerably limited. Thus, it would be highly
desirable to introduce new geometrical arrangements capa-
ble of exhibiting superior performance in terms of realizing
intelligent operations.

In this Letter we show that discrete optical solitons prop-
agating in two-dimensional waveguide array networks can
provide a rich environment for all-optical data processing
applications. We demonstrate that such arrays effectively
act like soliton wires along which these self-trapped en-
tities can travel. In addition, by using vector/incoherent
interactions at network junctions, soliton signals can be
routed at will on specific pathways. Therefore, this family
of solitons can be navigated anywhere within a two-
dimensional network of nonlinear waveguides. The pos-
sibility of realizing useful functional operations such
as blocking, routing, logic functions, and time gating is
discussed.

We begin our analysis by considering a two-dimensional
network of nonlinear waveguide arrays involving identical
elements. Each branch is composed of regularly spaced
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waveguides, separated by each other by distance D, as
shown in Fig. 1(a). The index profile of a single wave-
guide along with its linear mode is depicted in Figs. 1(b)
and 1(c). Every waveguide is designed to be single moded
at the operating wavelength [11]. To make the discus-
sion more relevant, let us assume that the cladding refrac-
tive index is n0 � 1.5, and that the wavelength used is
l0 � 1.5 mm. The linear refractive index difference be-
tween the core and cladding is taken to be d � 3 3 1023,
and the effective core radius is 5.3 mm. The distance
between waveguides is 15.9 mm, which results in a lin-
ear coupling constant c � 0.279 mm21 between nearest
neighbors. Note that the actual set of values used here is
not crucial to this discussion since the problem itself can
always be scaled. In addition, we assume that the ma-
terial is Kerr nonlinear and that it supports vector or in-
coherent interactions between two fields [12–14]. In this
case, the two field envelopes (propagating along z) evolve
according to
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where U and V are the normalized field envelopes, k �
2pn0�l0, and the scaled function f�x, y� represents the
linear refractive index distribution of this waveguide net-
work. In Eqs. (1), the term n2I0 stands for the maximum
nonlinear index change induced by the beam right at the
origin and, for simplicity, the self/cross-phase-modulation
ratio a is taken here to be unity. Equations (1) are solved
numerically using a beam propagation method, which al-
lows one to exactly monitor any radiation and reflection
losses in the network.

By using numerical relaxation methods, we then ob-
tain discrete soliton solutions in this array system. As
© 2001 The American Physical Society 233901-1
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FIG. 1. (a) Refractive index distribution along a single row of
waveguides; (b) refractive index profile of a single waveguide;
(c) the fundamental waveguide mode intensity.

an initial trial function we use the discrete soliton solu-
tions as obtained from coupled mode theory [2,15]. Here
we isolate two classes of solitons: (i) moderately confined
discrete solitons (hereby referred to as signals) and (ii)
strongly confined soliton states, which we call blockers.
A moderately confined soliton (essentially extending over
5–7 sites) residing on discrete waveguide sites is shown in
Fig. 2(a). The maximum nonlinear index change required
to support this soliton is DnNL � 4.6 3 1025 � n2I0. In
this case, because of the relatively weak confinement, the
maximum field amplitude at each lattice site approximately
follows a hyperbolic secant envelope function C�n� �
C0 sech�nD�x0�, where n � 0, 61, ... is associated with
the waveguide number, x0 is the soliton width, and C�n� is
the envelope function describing the peak intensities of U
and V at the discrete sites [2]. In this regime, the soliton is
highly mobile and its envelope is known to approximately
obey a nonlinear Schrödinger equation. In the other ex-
treme (for blockers), the field resides almost entirely in one
waveguide and its envelope is described approximately by
a defectlike state C�n� � C0 exp�2jnjD�x0�. This latter
class of solitons is known to exhibit much lower mobili-
ties. The blocking soliton of Fig. 2(b) induces a maximum
nonlinear index change of DnNL � 1 3 1023.

We then set a signal discrete soliton (Fig. 2a) in motion
along the horizontal axis of a network which involves
two array branches intersecting at 120±, as shown in
Fig. 3(a). This is done by initially imposing a linear
phase chirp (tilt) on the beam profile [5], i.e., C�n� �
C0 sech�nD�x0� exp�ign�, where in our example the
phase shift between neighboring sites is g � 0.6 rad.
Experimentally, this phase tilt can be provided by injecting
the optical beam at an angle with respect to the array [10].
In all our simulations the value of g was kept below p�2
so as to ensure distortionless propagation in the array,
by avoiding higher order diffraction effects [10]. Under
these conditions �g � 0.6 rad�, the soliton shifts its
233901-2
FIG. 2. (a) A moderately confined (signal) DS; (b) a strongly
confined DS (blocker).

position by one waveguide site �D � 15.9 mm� for every
z � 4.2 mm of propagation. As a result the soliton slides
along the horizontal branch and after passing the inter-
section moves to the upper branch. Figure 3(b) (obtained
after 6.5 cm) shows that this occurred with almost no
change in the soliton intensity profile or speed. Even more
importantly, the losses because of the bend are extremely
low (less than 0.7%). In other words, the soliton travels
only along the network pathways, i.e., the array behaves
like a soliton wire. These low levels of losses at 120±

junctions suggest that discrete solitons can be effectively
used as information carriers in homeycomblike networks.
During propagation, the soliton exhibits robustness and it
does not suffer from transverse modulational instability.
This is because the soliton itself is linearly guided by the
array in the direction normal to its motion. Similar results
were obtained for a 90± bend, as depicted in Figs. 3(c) and
3(d). In this case, the soliton traverses the bend with a

loss of 5%. Figure 3(d) depicts the soliton intensity after
6.4 cm of propagation (after the 90± bend), indicating that
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FIG. 3. (a) A signal DS, propagating along a 120± branch;
(b) DS intensity at z � 6.5 cm (after traversing the bend);
(c) same as (a) for a 90± bend; (d) DS intensity at 6.4 cm when
the signal is already on the vertical branch.
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the DS remained practically invariant. This behavior is
to some extent reminiscent of that of waves propagating
along sharp bends in photonic crystal waveguides [16].
Yet, unlike what happens in photonic crystals which use
a high refractive index contrast, the process reported here
requires a very small index difference d. This is due to the
fact that the DS soliton motion relies on optical tunneling,
i.e., it slides at grazing angles. We then compared our
results with those obtained using one-dimensional contin-
uous solitons propagating obliquely in a planar waveguide
system [17]. In this latter configuration, the soliton suffers
a 30% loss and very quickly deteriorates after a 90±

waveguide bend. This clearly indicates that DSs have a
definite advantage over their continuous counterparts in
such network arrangements.

Next we investigate how discrete solitons can be routed
or blocked at network junctions using vector interactions.
Figure 4(a) shows a Y-120± intersection involving three
array branches. A DS of the blocking type [same as that
of Fig. 2(b)] is positioned at site A, right at the entrance of
the lower branch. A signal soliton, like that of Fig. 2(a),
is then set in motion (from left to right) with g � 0.6 rad,
starting from position B. The two solitons are mutually in-
coherent, i.e., one is described by the U field and the other
one by V in Eqs. (1). Our simulations indicate that the
signal DS is routed to the upper branch in an elastic fash-
ion. Figure 4(b) depicts the intensity of the signal DS at
5.68 cm (after passing the intersection). During this inter-
action, the blocker always remains in its preassigned posi-
tion. The refractive index around the interaction region of
these two DSs is mostly dominated by the high-intensity
blocker. The junction losses, because of reflections and
some small transmission to the lower branch, are in this
case about 2%. In other words, the strongly confined DS
blocks the lower pathway and all optically routes the sig-
nal soliton to the upper branch. Note that, had the blocker
not been present at the junction, the signal DS would have
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FIG. 4. (a) A signal DS routed by a blocker at position A;
(b) intensity of the signal beam after 5.68 cm of propagation
at s � 95 mm; (c) same as in (a) with a T junction; (d) an X
junction blocked at sites A and B.
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totally disintegrated into transmitted and reflected waves
(�30% per branch). Thus the presence of the blocking DS
is extremely essential for this routing operation to occur.
Similar results were obtained for T junctions, as shown in
Fig. 4(c), using the same two families of mutually inco-
herent discrete solitons. When the blocker is present at
position A, the signal is routed to the upper branch with an
efficiency of 94.3%. Another basic element in such net-
works is an X junction, as shown in Fig. 4(d). Rerouting
at this junction can be accomplished by using two block-
ers at positions A and B, thus cutting out two of the three
output pathways. These two highly confined DSs are co-
herent with each other and are in antiphase �6� for stability
purposes [18]. The signal in this case is routed to branch
Q with an efficiency of 96%. The solitons used are again
those of Fig. 2. This process requires both blockers to be
present, otherwise the signal DS will disintegrate at the
junction. Thus, essentially, the X junction functions as an
AND logic gate, i.e., Q � A ? B. Again, during this in-
teraction the two blockers remained in their preassigned
positions. Finally, in addition to AND logic functions, a
NOT logic gate �Q � Ā� can be easily implemented by
placing a blocker in the path of a signal DS provided that
the two beams are mutually incoherent. We would like to
stress that, in all examples discussed in this section, the
blocker(s) must be interacting incoherently or vectorially
with the signals. On the other hand, if these two classes of
DSs are coherent with respect to each other [19], the block-
ing and routing actions at a junction are impaired, i.e., the
interactions are no longer elastic. It is also perhaps worth
noting that one can draw a strong parallelism between the
all-optical blocking actions reported here and those occur-
ring in abundance in biological systems [20]. For example,
drugs are known to block synaptic neuron transmission by
changing the synthesis of a specific neurotransmitter.

Time gating functions are also possible in such net-
works. Figure 5 shows a T junction with a blocker B
placed at the intersection. A signal DS S, which is in-
coherent with respect to the blocker, travels from right to
left towards the junction. At the same time, another sig-
nal soliton G, which is coherent with the blocker, moves
toward the junction on the vertical branch. In our system
the G wave reaches the junction before the S. Because
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FIG. 5. A signal DS G pulling the blocker B just in time to
allow the S soliton to pass through, thus performing time gating.
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of the coherent interaction between the blocker and G, the
blocker then moves discretely [19] by one slot upwards,
just in time to allow the signal soliton to pass through.

We would like to emphasize that the results presented
in our paper are possible over a wide range of parameters.
For example, the transmission efficiency of the T junction
shown in Fig. 4(c) remains above 90% for 0.25 , g , 1.
Similarly, the transmission efficiency of the Y junction of
Fig. 4(a) exceeds 90% provided that the blocker’s DnNL
is above 0.5 3 1023 when g � 0.6. In addition our re-
sults are insensitive to the particular choice of the wave-
guide profile, as long as each waveguide is designed to be
single moded.

In conclusion, we have demonstrated that discrete
optical solitons propagating in two-dimensional networks
of waveguide arrays can provide a rich environment for
all-optical data processing applications. These solitons
can be navigated on predefined tracks (negotiating even
sharp bends) and can be all optically routed anywhere in
the network using vector interactions. Logic functions
such as AND, NOT, and time gating are possible. The
subsystems or building blocks involved are modular,
i.e., they can be replicated anywhere in the network. In
addition, these two-dimensional waveguide array systems
are compatible with photonic crystal technologies [16,21].
Even more importantly, such a system has the flexibility
of exploiting both coherent and incoherent interactions
and, in principle, N mutually incoherent field components
can be involved [13]. Coherent collisions lead to disrete
spatial shifts, whereas incoherent interactions allow for
elastic collisions and leave the blocking DSs in their
preassigned positions. The possibility of implementing
all-optical routers and memory functions using such
networks is currently under investigation.

Animations of the processes described in Figs. 3–5,
as obtained by numerically solving Eqs. (1), can also be
viewed; see Ref. [22].
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