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A scheme is proposed for generating maximally entangled Greenberger-Horne-Zeilinger (GHZ) atomic
states for testing quantum nonlocality. In the scheme, three atoms are simultaneously sent through a
nonresonant cavity in a vacuum state. They are initially in the same state, and thus there is no energy
exchange in the process. The cavity-assisted collision results in a phase-shift which depends upon the
collective atomic excitations. In principle, the scheme can be generalized to generate N-atom GHZ
states. The scheme is insensitive to cavity decay and requires only one cavity, providing new prospects
for testing fundamental aspects of quantum mechanics and for quantum information processing.
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Entanglement of many particles is of fundamental inter-
est to test quantum mechanics against local hidden theory
[1,2]. Furthermore, it has practical applications in quantum
information processing, such as quantum cryptography [3],
computer [4], and teleportation [5]. In recent years, much
attention has been directed to the generation of highly en-
tangled states. Two-atom entangled states have been ex-
perimentally realized in microwave cavity QED [6] and
ion traps [7,8]. Three-photon entanglement has also been
observed and used to verify quantum nonlocality [9,10].
Four-particle entanglements have been demonstrated in
ion traps [11] by using the technique proposed by Mølmer
and Sørensen [12].

In microwave cavity QED, proposals have been pre-
sented for the generation of multiatom entangled states
using atomic beams [13–16]. Recently, three-particle en-
tanglement has been demonstrated within a cavity [17].
However, there have been no reports on the demonstration
of quantum nonlocality using entanglement of three or
more massive particles. We have proposed a scheme for
the generation of two-atom entangled states within a non-
resonant cavity [18] and three-atom Greenberger-Horne-
Zeilinger (GHZ) states using two nonresonant cavities
[19]. The advantage is that the cavity decay is suppressed
during the procedure. Following the scheme of Ref. [18],
an experiment has been reported, in which two Rydberg
atoms crossing a nonresonant cavity are entangled by co-
herent energy exchange [20]. In this paper we propose an
alternative scheme for the generation of three-atom GHZ
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states and test of quantum nonlocality without using Bell
inequalities [2]. This time we require only a single cavity
always in the vacuum state. The atoms are entangled by
phase-shift depending on the number of collective atomic
excitations, instead of energy exchange. Furthermore, in
principle more atoms can be entangled by such a way.

We first consider the interaction of N two-level atoms
with a single-mode cavity. The Hamiltonian is (assuming
h̄ � 1)

H � H0 1 Hi , (1)

where

H0 � va1a 1 v0

NX
j�1

Sz,j , (2)

Hi � g
NX

j�1
�a1S2

j 1 aS1
j � , (3)

where Sz,j � 1
2 �jej� �ej j 2 jgj � �gj j�, S1

j � jej� �gjj, and
S2

j � jgj� �ej j, with jej� and jgj� being the excited and
ground states of the jth atom, a1 and a are the creation
and annihilation operators for the cavity mode, v0 is the
atomic transition frequency, v is the cavity frequency, and
g is the atom-cavity coupling strength. In the case d �
v0 2 v ¿ g

p
n̄ 1 1, with n̄ being the mean photon num-

ber of the cavity field, there is no energy exchange between
the atomic system and the cavity. The energy conversing
transitions are between jejgkn� and jgjekn�. The Rabi fre-
quency l for the transitions between these states, mediated
by jgjgkn 1 1� and jejekn 2 1�, is given by [19,21]
l �
�ejgknjHijgjgkn 1 1� �gjgkn 1 1jHijgjek n�

d
1

�ejgknjHijejekn 2 1� �ejekn 2 1jHijgjekn�
2d

�
g2

d
. (4)

Since the two transition paths interfere destructively, the Rabi frequency is independent of the photon number of the
cavity mode. Then the effective Hamiltonian is

He � l

"
NX

j�1
�jej� �ej jaa1 2 jgj� �gjja

1a� 1

NX
j,k�1

S1
j S2

k

#
, j fi k . (5)

The first and second terms describe the photon-number dependent Stark shifts, and the third term describes the dipole
coupling between the jth and kth atoms induced by the cavity mode. When the cavity mode is initially in the vacuum
state j0�, it will remain in the vacuum state throughout the procedure. Since aa1j0� � j0� and a1aj0� � 0, the effective
© 2001 The American Physical Society 230404-1



VOLUME 87, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 3 DECEMBER 2001
Hamiltonian reduces to

He � l

"
NX

j�1

jej� �ej j 1

NX
j,k�1

S1
j S2

k

#
, j fi k . (6)

Agarwal et al. [22] have also derived the effective Hamilto-
nian for a collection of two-level atoms interacting disper-
sively with a single-mode electromagnetic field in a cavity
suffering losses and shown that an atomic Schrödinger cat
state can be generated from an atomic coherent state by the
process. When the cavity mode is in the vacuum state the
effective Hamiltonian of Ref. [22] is

H 0
e � hS1S2 � h

∑
N
2

µ
N
2

1 1

∂
2 S2

z 1 Sz

∏
, (7)

where S1 �
PN

j�1 S1
j , S2 �

PN
j�1 S2

j , Sz �
PN

j�1 Sz,j ,
and h � g2d��k2 1 d2�, with k being the cavity decay
rate. It can be easily shown that S1S2 �

PN
j�1 jej� �ejj 1PN

j,k�1 S1
j S2

k , j fi k. Under the assumption that the cavity
decay rate k is much smaller than the detuning d so that
k can be neglected in the expression of h the effective
Hamiltonian of Eq. (7) agrees with that of Eq. (6).

In order to generate a three-atom GHZ state we simul-
taneously send three two-level atoms across an initially
vacuum cavity. Assume that each atom is initially in the
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state �1�
p

2 � �jgj� 1 ijej��. Then the state for the atomic
system is

jc�0�� �
1

p
23

3X
k�0

ik jfk� , (8)

where

jf0� � jg1g2g3� , (9)

jf1� � �je1g2g3� 1 jg1e2g3� 1 jg1g2e3�� , (10)

jf2� � �je1e2g3� 1 je1g2e3� 1 jg1e2e3�� , (11)

jf3� � je1e2e3� . (12)

jfk� is the eigenstate of the effective Hamiltonian He,

Hejfk� � k�4 2 k�ljfk� . (13)

After an interaction time t we have

jc�t�� �
1

p
23

3X
k�0

e2ik�42k�ltik jfk� . (14)

The cavity-assisted collision does not change the proba-
bilities of each atom being in the ground and excited states.
However, the phase of the atomic state is shifted by an
amount depending upon the excitation k. With the choice
lt � p�2, we have
jc�t�� �
1

p
23

3X
k�0

ik2

ikjfk� �
1
4

3X
k�0

�eip�4 1 e2ip�4�21�k�ikjfk�

�
1
4

eip�4

"
3Y

j�1

�jgj� 1 ijej�� 2 i
3Y

j�1

�jgj� 2 ijej��

#
. (15)
The time evolution has some similarity with that of a
light field passing through an amplitude dispersive medium
[23,24]. We can rewrite jc�t�� as

jc�t�� �
1
p

2
eip�4�j11z 12z 13z� 1 j21z 22z 23z�� ,

(16)

where

j1jz� �
1
p

2
�jgj� 1 ijej �� , (17)

j2jz� �
1
p

2
�jej� 1 ijgj�� . (18)

Since j1jz� is orthogonal to j2jz �, jc�t�� is a GHZ state.
Assume that j1jz� and j2jz� are spin-up and spin-down

states along the z axis. Then the spin-up and spin-down
states along the x axis are

j1jx� �
1
p

2
�j1jz� 1 j2jz �� �

1 1 i

2
�jgj� 1 jej�� ,

(19)

j2jx� �
1
p

2
�j1jz� 2 j2jz �� �

1 2 i
2

�jgj� 2 jej�� .

(20)
The spin-up and spin-down states along the y axis are

j1jy� �
1
p

2
�j1jz� 1 ij2jz�� � ijej � , (21)

j2jy� �
1
p

2
�j1jz� 2 ij2jz�� � jgj � . (22)

We first analyze the predictions of local reality. We call
elements of reality Xj, Yj , Zj with values 1 and 21 for
spin-up and spin-down states along the x, y, and z axes, re-
spectively. We then have the relation Y1Y2X3 � Y1X2Y3 �
X1Y2Y3 � 21 for the state jc�t��. We now consider the
value of X1X2X3. Local realism claims that any mea-
surement on one particle should be independent of mea-
surements on other particles. This leads to X1X2X3 �
�Y1Y2X3� �Y1X2Y3� �X1Y2Y3� � 21. On the other hand,
quantum mechanics predicts X1X2X3 � 1. Thus, four ex-
periments are sufficient for the demonstration of quantum
nonlocality. If the results of Y1Y2X3, Y1X2Y3, and X1Y2Y3
are all 21, the result of X1X2X3 directly gives the test of
quantum nonlocality.

We now turn to the problem of generating a four-atom
GHZ state. Again assume that each atom is initially in the
state �1�

p
2 � �jgj� 1 ijej��. Then the state for the atomic
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system is

jc�0�� �
1
4

4X
k�0

ik jfk� , (23)

where

jf0� � jg1g2g3g4� , (24)

jf1� � �je1g2g3g4� 1 jg1e2g3g4�
1 jg1g2e3g4� 1 jg1g2g3e4�� , (25)

jf2� � �je1e2g3g4� 1 je1g2e3g4� 1 je1g2g3e4�
1 jg1e2e3g4� 1 jg1e2g3e4� 1 jg1g2e3e4�� ,

(26)
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jf3� � �je1e2e3g4� 1 je1e2g3e4�
1 jg1e2e3e4� 1 je1g2e3e4�� , (27)

jf4� � je1e2e3e4� . (28)

After an interaction time t of the four atoms with the cavity
we have

jc�t�� �
1
4

4X
k�0

e2ik�52k�ltik jfk� . (29)

With the choice lt � p�2, we have
jc�t�� �
1
4

4X
k�0

ik2

jfk� �
1

4
p

2
eip�4

"
4Y

j�1

�jgj� 1 jej�� 2 i
4Y

j�1

�jgj� 2 jej��

#
. (30)
We can rewrite jc�t�� as

jc�t�� �
1
p

2
eip�4�j11z 12z 23z 24z �

2 j21z 22z 13z 14z�� , (31)

where

j1jz� �
1
p

2
�jgj� 1 jej��, j � 1, 2 , (32)

j13z� �
1
p

2
�jg3� 2 je3�� , (33)

j14z� �
i
p

2
�jg4� 2 je4�� , (34)

j2jz� �
1
p

2
�jgj� 2 jej��, j � 1, 2 , (35)

j2jz� �
1
p

2
�jgj� 1 jej��, j � 3, 4 , (36)

Since j1jz� is orthogonal to j2jz�, jc�t�� is a four-atom
GHZ state.

Assume that j1jz� and j2jz� are spin-up and spin-down
states along the z axis. Then the spin-up and spin-down
states along the x axis are

j1jx� � jgj �, j � 1, 2, 3 , (37)

j14x� �
1 1 i

2
jg4� 1

1 2 i

2
je4� , (38)

j2jx� � jej�, j � 1, 2, 3 , (39)

j24x� �
i 2 1

2
jg4� 2

1 1 i
2

je4� . (40)

The spin-up and spin-down states along the y axis are
j1jy� �
1 1 i

2
jgj� 1

1 2 i
2

jej�, j � 1, 2 , (41)

j2jy� �
1 2 i

2
jgj� 1

1 1 i
2

jej�, j � 1, 2 , (42)

j13y� �
1 1 i

2
jg3� 1

i 2 1
2

je3� , (43)

j23y� �
1 2 i

2
jg3� 2

1 1 i

2
je3� , (44)

j14y� � ijg4� , (45)

j24y� � 2ije4� . (46)

For this four-atom GHZ state we have the relation
Y1Y2Y3Y4 � X1Y2X3Y4 � X1Y2Y3X4 � 21. We now
consider the value of Y1Y2X3X4. According to local real-
ism Y1Y2X3X4 � �Y1Y2Y3Y4� �X1Y2X3Y4� �X1Y2Y3X4� �
21. On the other hand, quantum mechanics predicts
Y1Y2X3X4 � 1. Thus, in this case four experiments
are also sufficient for the demonstration of quantum
nonlocality.

Assume that N atoms are sent through an initially vac-
uum cavity. Each atom is initially in the state �1�

p
2 � 3

�jgj� 1 ijej��. Then the state for the atomic system is

jc�0�� �
1

p
2N

NX
k�0

ikjfk� , (47)

where jfk� is the sum of all k�N 1 1 2 k� terms with
k atoms in excited states. Applying the effective Hamilto-
nian He on each term we obtain ljfk� since He contains all
possible exchange of excitation between two atoms. Thus
we have

Hejfk� � k�N 1 1 2 k�ljfk� . (48)

After an interaction time t � p��2l� of the N atoms with
230404-3
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the cavity we have

jc�t�� �
1

p
2N

NX
k�0

e2ik�N112k�p�2ik jfk� �
1

p
2N11

eip�4

(
NY

j�1

�jgj� 1 �2i�N jej�� 2 i
NY

j�1

�jgj� 2 �2i�N jej��

)
. (49)
A correlation inequality has been derived for such a state
[25]. It has been shown that quantum mechanics vio-
lates this inequality by an amount growing exponentially
with N .

We now give a brief discussion on the experimental
matters. For the Rydberg atoms with principal quantum
numbers 50 and 51, the radiative time is about Tr � 3 3

1022 s, and the coupling constant is g � 2p 3 24 kHz
[26]. For a three-atom system, the damping time is T 0

r �
Tr�3 � 1022 s. With the choice d � 10g, the required
atom-cavity-field interaction time is on the order of
pd��2g2� � 1024 s. Then the time needed to complete
the whole procedure is on the order of 1023 s, much
shorter than T 0

r .
In conclusion, we have proposed a scheme for the gen-

eration of multiatom GHZ states and test of quantum non-
locality. The scheme has two distinct advantages. As in the
scheme of our previous scheme [19], the cavity is always in
the vacuum state and thus the cavity decay is suppressed.
Another advantage is that a single atom-cavity interaction
is sufficient to entangle many atoms and only one cavity is
required. The process is essentially a cavity-assisted mul-
tiatom collision. In the previous case [18,20] the atoms
are not initially in the same state and the entanglement
arises from the coherence energy exchange. In the present
scheme the atoms are initially in the same state, and thus
there is no energy exchange in the process. The entangle-
ment results from the phase-shift depending upon the num-
ber of collective atomic excitations. Our scheme opens
a new way for engineering multiatom entanglement and
testing quantum nonlocality. Our scheme might also be
useful in quantum information processing, such as quan-
tum cryptographic conference and quantum secret sharing
[27]. Based on the techniques reported in Refs. [17] and
[20] our scheme might be experimentally realizable.
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