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Adiabaticity Criterion for Moving Vortices in Dilute Bose-Einstein Condensates
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Considering a moving vortex line in a dilute atomic Bose-Einstein condensate within time-dependent
Hartree-Fock-Bogoliubov-Popov theory, we derive a criterion for the quasiparticle excitations to follow
the vortex core rigidly. The assumption of adiabaticity, which is crucial for the validity of the stationary
self-consistent theories in describing such time-dependent phenomena, is shown to imply a stringent
criterion for the velocity of the vortex line. Furthermore, this condition is shown to be violated in the
recent vortex precession experiments.
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Since the first experimental realizations of Bose-
Einstein condensation in dilute, harmonically trapped
atomic gases [1], there has been great interest to inves-
tigate the superfluid properties of these unique quantum
systems. Because of the inherent connections between
quantized vorticity and superfluidity, this interest culmi-
nated as the creation of vortices in trapped condensates
was demonstrated [2]. The recent experimental advances
in manipulating vortices and observing their dynamics
are providing efficient tools to study the physics of these
interacting many-particle systems and to relate it to the
quantitative predictions of thermal field theories.

The structure and, in particular, the stability of vortices
in dilute Bose-Einstein condensates (BECs) has been under
an extensive theoretical analysis [3]. The majority of the
studies have been carried out within the zero-temperature
mean-field formalism consisting of the Gross-Pitaevskii
(GP) and Bogoliubov equations. Within the Bogoliubov
approximation (BA), the excitation spectra of vortex states
in statically trapped condensates have been shown to con-
tain at least one mode with positive norm but negative
energy [4]. These anomalous modes have crucial conse-
quences for the superfluid properties of the condensates,
since they imply the vortices to be energetically unsta-
ble in nonrotating traps. Furthermore, these states have
been shown to manifest themselves in the precession of
the vortex line about the symmetry axis of the trap, with
the precession frequency and direction determined by the
excitation energy —especially, the negative energies imply
precession in the direction of the condensate flow [5].

The predictions of the Bogoliubov approximation agree
well with the experiments. The critical trap rotation fre-
quencies for vortex nucleation can be understood theoreti-
cally to good accuracy [6]. Also, the precession of vortices
predicted by the GP equation has been experimentally ob-
served [7]. The precession frequency and, in particular, its
direction are in line with expectations based on the BA. In
general, the mean-field theory has turned out to be remark-
ably successful in describing trapped BECs, including the
vortex states and their dynamics [8].

However, the situation changes when the analysis is
taken beyond the zero-temperature BA by self-consistently
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including the effects of the thermal gas component. Sta-
tionary self-consistent solutions for vortex states within the
Popov approximation (PA) and its recently proposed ex-
tensions contain no anomalous modes even in the zero-
temperature limit [9,10]. This is due to the partial filling
of the vortex core with the noncondensate, which serves
to lift the anomalous quasiparticle states to positive ener-
gies. The positive precession mode energies, in turn, im-
ply vortex precession opposite to the condensate flow, in
evident contradiction with the experimental observations
and the predictions of the BA. In light of the success of
the self-consistent approximations in predicting excitation
spectra for irrotational condensates [11,12], this discrep-
ancy is surprising. In addition, the close agreement of the
BA with the results of the vortex precession experiments
implies that the mean-field approximation itself is not the
cause of the failure of the PA.

We suggest that the apparent disagreement between the
PA and the experiments could be due to incomplete ther-
malization and/or inadequacy of the quasistatic formalism
in describing moving vortices. In order to clarify the lat-
ter possibility, we show in this Letter that the validity of
the quasistatic self-consistent mean-field treatment in mod-
eling moving vortices imposes for the vortex velocity a
stringent criterion, which seems to be violated in the pre-
cession observations reported thus far. This implies that
at the observed velocities the quasiparticles cannot follow
the vortex core rigidly, and its structure and spectrum are
deformed from those of a static vortex.

In order to describe the dynamics of trapped BECs,
we use a time-dependent mean-field formalism based on
the Popov approximation [13]. Working in the grand-
canonical formalism, we start with the Heisenberg equa-
tion of motion,

ih̄
≠

≠t
c�r, t� � H0�r�c�r, t� 1 gcy�r, t�c�r, t�c�r, t� ,

(1)

for the field operator c�r, t� of a dilute boson gas.
Above, H0�r� � 2h̄2=2�2m 1 Vtr�r� 2 m is the grand-
canonical one-particle Hamiltonian corresponding to the
trapping potential Vtr�r� and the chemical potential m, and
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the coupling constant g is related to the s-wave scattering
length a by g � 4p h̄2a�m. Inserting into the nonequi-
librium average of Eq. (1) the Bogoliubov decomposition

c�r, t� � F�r, t� 1 c̃�r, t� (2)

of the field operator in terms of the c-number condensate
wave function F�r, t� � �c�r, t�� and the noncondensate
field operator c̃�r, t�, and treating the expectation values
of the noncondensate operator products according to the
Popov mean-field scheme, we arrive at the generalized GP
equation,

ih̄
≠

≠t
F�r, t� � L �r, t�F�r, t� 2 gnc�r, t�F�r, t� , (3)

for the condensate wave function. Above, L �r, t� �
H0�r� 1 2gn�r, t�, and

nc�r, t� � jF�r, t�j2, (4a)

ñ�r, t� � �c̃y�r, t�c̃�r, t�� , (4b)

n�r, t� � nc�r, t� 1 ñ�r, t� (4c)

denote the condensate, noncondensate, and total densities,
respectively. Correspondingly, within the Popov mean-
field approximation, one finds

ih̄
≠

≠t
c̃�r, t� � L �r, t�c̃�r, t� 1 gF2�r, t�c̃y �r, t� , (5)

for the equation of motion of the noncondensate field
operator. Substituting into Eq. (5) the Bogoliubov
transformation

c̃�r, t� �
X
n

�un�r, t�an 2 y�
n�r, t�ay

n � (6)

of the field operator in terms of the bosonic quasiparti-
cle operators an and ay

n , we find that the quasiparticle
amplitudes un�r, t� and yn�r, t� satisfy the time-dependent
Hartree-Fock-Bogoliubov-Popov (TDHFBP) equations:

ih̄
≠

≠t
un�r, t� � L �r, t�un�r, t� 2 gF2�r, t�yn�r, t� ,

(7a)

2ih̄
≠

≠t
yn�r, t� � L �r, t�yn�r, t� 2 gF�2�r, t�un�r, t� .

(7b)
Introducing the matrix notations,

fn �

µ
un

yn

∂
, O �

µ
L 2gF2

gF�2 2L

∂
, (8)

the quasiparticle equations can be expressed in the compact
form,

ih̄
≠

≠t
fn�r, t� � O �r, t�fn�r, t� . (9)

Here and henceforth, we suppress the arguments of func-
tions when they are not needed for clarity. For conve-
nience, we also define positive- and negative-sign scalar
products of quasiparticle states by setting
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� fi jfj�6 �
Z

dr�u�
i �r�uj�r� 6 y�

i �r�yj�r�� . (10)

The requirement that the quasiparticle operators an, ay
n

satisfy canonical bosonic commutation relations implies
for the quasiparticle states the normalization � fi jfj�2 �
dij; correspondingly, only states with positive norm are to
be included in the Bogoliubov transformation of Eq. (6).
This normalization can be straightforwardly verified to be
consistent with the TDHFBP equations.

In case the mean fields and, hence, the operator O �r, t�
vary slowly in time, we expect that the solutions of the
TDHFBP equations may be approximated by solving at
each instant of time the corresponding quasistationary
eigenequations:

En�t�f�0�
n �r, t� � O �r, t�f�0�

n �r, t� . (11)

This adiabatic approximation is accurate if the transition
rates, as determined by the exact time development, of
the quasistationary states to each other are negligible. In
order to formulate this criterion quantitatively, we follow
the treatment of Ref. [14]. Let 	 f

�0�
i 
 be a complete set

of solutions of Eq. (11); especially, it contains the zero-

energy solution f
�0�
0 ~ �F0, F�

0 �T , where F0 is the solution
of the stationary GP equation. We orthonormalize the
solutions by requiring

j� f
�0�
i jf

�0�
j �2j � dij �i fi 0�; � f

�0�
0 jf

�0�
0 �1 � 1 .

(12a)

In addition, we may impose the condition [15]

� f
�0�
0 jf

�0�
i �1 � 0 �i fi 0� . (12b)

In order to analyze the transitions of the quasistation-
ary states to each other, we expand the solutions of the
TDHFBP equation in terms of them. Substitution of the
ansatz

fn�r, t� �
X
j

anj�t�f�0�
j �r, t�e2�i� h̄�

Rt

0
Ej �t0�dt 0

(13)

into Eq. (9) yields the coupled differential equations,X
j

� �anjf
�0�
j 1 anj

�f
�0�
j �e2�i�h̄�

Rt

0
Ej�t 0�dt 0

� 0 , (14)

where the dots above symbols denote time derivatives.
Taking the positive scalar products of these equations with
the state f

�0�
0 , utilizing the orthonormalization relations

(12), and solving for �an0, we find

�an0 � 2
X
j

anje
2�i�h̄�

Rt

0
Ej�t 0�dt 0� f

�0�
0 j �f

�0�
j �1 . (15a)

In a similar manner, we derive the equations

�ank � 2
X
j

anje
2�i�h̄�

Rt

0
�Ej�t 0�2Ek�t 0��dt 0 � f

�0�
k j �f

�0�
j �2 (15b)

for the coefficients with k fi 0.
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In order to estimate the decay of a state f
�0�
n , we assume

that at time t � 0 its expansion coefficients are anj�0� �
dnj. Approximating the slowly varying scalar products
and energy eigenvalues to be constant in time, and the
decay to be negligible, such that we may also treat the
anj coefficients on the right-hand sides (rhs) of Eqs. (15)
as constants, we can integrate them to yield

ank�t� � 2
i

vnk
�e2ivnkt 2 1� � f

�0�
k j �f�0�

n �6 . (16)

Above, the positive scalar product is chosen for k � 0, the
negative otherwise, and we have denoted vnk � �En 2

Ek��h̄. Since the quasistationary states are orthonormal-
ized, the requirement of negligible decay thus impliesÇ

1
vnk

� f
�0�
k j �f�0�

n �6

Ç
ø 1 . (17)

Essentially, this is the validity criterion of the adiabatic
approximation for the TDHFBP equations of a dilute
boson gas.

Consider now the case of a vortex line precessing with
frequency npr about a circular orbit of radius Rpr in a har-
monically trapped condensate; for simplicity, we assume
a trapping potential of the form Vtr �

1
2mv2

r r2 in cylin-
drical coordinates r � �r, u, z�, and the vortex line to be
directed along the z axis [16]. In view of the differences
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in the vortex-core structure between the BA and the self-
consistent approximations, it is especially interesting to
find out whether the lowest-energy quasiparticles, which
constitute the major contribution to the noncondensate fill-
ing the vortex core, can follow the moving vortex line
rigidly, i.e., adiabatically. In order to assess the validity
of the criterion (17) for such states, we use the estimate

� f
�0�
k j �f�0�

n �6 � v ? � f
�0�
k j=f�0�

n �6 , (18)

where v is the velocity of the vortex line. This approxi-
mation treats accurately the region in the vicinity of the
vortex line, although it is exact only for a uniform vortex
motion. Furthermore, supposing the precession orbit is
not too near the condensate boundary, we may use the
quasiparticle states of a system with a vortex located in
the center of the trap to estimate the scalar products on the
rhs of Eq. (18). Such a system is cylindrically symmetric,
and the quasiparticle eigenstates can be chosen to be of
the form

uq�r� � uq�r�eiqz�2p�L�z1i�qu11�u , (19a)

yq�r� � vq�r�eiqz�2p�L�z1i�qu21�u , (19b)

where qu and qz are integer angular and axial momentum
quantum numbers, respectively, and q denotes the com-
plete set of quantum numbers for the states. Calculation
of the required matrix elements is straightforward for these
states —the result is
yIqq0 � v ? � f�0�
q j=f

�0�
q0 �6

� 2
y

2
dqzq0

z
djqu2q0

u j,1

Z `

0
dr

∑
r

µ
u�

q

duq0

dr
6 v�

q

dvq0

dr

∂
1 �q0

u 2 qu� ��q0
u 1 1�u�

quq0 6 �q0
u 2 1�v�

qvq0�
∏

, (20)
where y � jvj is the magnitude of the velocity of the
vortex line, and the states are normalized according toR`

0 r dr�juqj
2 6 jyqj

2� � 1, with the plus (minus) sign
used for the zero-energy condensate state (other states).
Equations (17), (18), and (20) finally yield the criterion,

y ø yqq0 �
Ç

vqq0

Iqq0

Ç
�for all q� , (21)

for the velocity of the precessing vortex in order for the
state f

�0�
q0 to follow the vortex rigidly.

We have numerically computed adiabaticity velocities
yqq0 for a cylindrical condensate. The static HFB equa-
tions were solved self-consistently within the PA and its
so-called G1 and G2 variants [12,17], in order to find
the quasiparticle amplitudes uq�r�, yq�r�, and the respec-
tive eigenenergies — for details of the methods used in
the computations, see Ref. [10]. In order to facilitate
comparison with the vortex precession observations, we
use parameter values which essentially correspond to the
experiments reported in Ref. [7]. Especially, the radial
trapping frequency was set to nr � vr�2p � 7.8 Hz,
and the density of the trapped 87Rb atoms was adjusted
to yield a healing length j � �8pn0a�21�2 � 0.7 mm at
temperature T � 0.8TBEC. Here n0 denotes the peak den-
sity of the condensate, and the condensation temperature
TBEC � 30 nK.

In the experiments, the observed precession radii were
of the order of Rpr � R�3 � 10 mm, where R denotes
the radius of the condensate [7]. Bare-core vortices were
observed to precess in the direction of the condensate flow
with frequency npr � 1.8 Hz, which corresponds to a ve-
locity yexp � 2pRprnpr � 0.1 mm�s. This is to be com-
pared with the computed velocities yqq0 for the lowest
quasiparticle states with qz � 0, displayed in Fig. 1. Al-
though yexp & yqq0 , we find the adiabaticity condition (21)
not to be fulfilled. This suggests that, due to the deforma-
tion of the quasiparticle states, the noncondensate cannot
follow the vortex line rigidly at these velocities. Especially
interesting is the smallest adiabaticity velocity given by the
decay of the so-called lowest core localized state (LCLS),
which is the lowest excitation with �qu , qz� � �21, 0�, and
itself corresponds to the precession of the vortex. The
LCLS has a crucial role in the filling of the vortex core
with noncondensate, which stabilizes the static vortex state
[9,10]. In fact, this state is almost solely responsible for the
differences in the vortex structure between the BA and the
PA in the low-temperature limit. Deformation of the LCLS
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FIG. 1. Adiabaticity velocities determined by decay rates be-
tween the lowest vortex state excitations (dots) with qz � 0. The
data correspond to the PA and system temperature T � 0.8TBEC.
The arrows denote the decay channels of the modes to each
other, and the numbers the corresponding adiabaticity velocities
yqq0 [mm�s] [see Eq. (21)]. Note especially the low adiabatic-
ity velocity given by the transitions between the precession and
breathing modes —transitions from the precession mode are cru-
cial in determining the deformation of the core structure of a
moving vortex. Furthermore, due to weaker mutual couplings,
the adiabaticity velocities given by transitions between states
with higher energy or qz fi 0 were, in general, found to be
larger. The degree of adiabaticity of a moving vortex is thus
essentially determined by the lowest collective modes.

due to the vortex motion thus implies crucial modifications
for the vortex core structure. The quasistationary noncon-
densate profile with a pronounced peak in the vortex core
[10] is expected to be deformed to a smoother, more elon-
gated profile because of the tendency of the quasiparticles
to lag the vortex motion. Eventually, for high velocities
the vortex tends to shake off the thermal cloud excess in
the core, and one may argue that, in the limit of extreme
nonadiabaticity, the BA would thus be more suitable in de-
scribing the vortex state than the quasistationary PA.

The given adiabaticity velocities also hold for the G1
and G2, since differences between the approximations turn
out to be negligible in this respect. Computations with
various parameter values also confirmed the validity of the
criterion (21) to be largely independent of the specific val-
ues of the trapping frequency, the density of the gas, or the
effective interaction between the atoms. Essentially, the
adiabaticity of the system is determined by the precession
radius Rpr, via its proportionality to the velocity of the pre-
cessing vortex line. However, it seems that for currently
realizable condensates the precession radii should be of the
order of the vortex core radius or less for the adiabaticity
criterion to be satisfied.

In conclusion, we have derived a criterion for the validity
of the quasistationary approximation for a time-dependent
mean-field formalism describing the dynamics of the
condensate and thermal components of a dilute boson gas.
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In general, nonadiabaticity should be taken into account
when kinetic rates of the system exceed the frequency
separations of the excitations relevant to the dynamics of
the thermal gas component — for harmonically trapped
condensates the latter time scale is given by the trapping
frequency. Application of the adiabaticity criterion to a
harmonically trapped Bose-Einstein condensate contain-
ing an off-axis, precessing vortex line is shown to yield
for the vortex velocity a condition which is not fulfilled
in the experiments conducted thus far. Deformation of the
vortex structure due to its motion is thus suggested to be
at least partly responsible for the apparent discrepancies
between the predictions of the stationary self-consistent
approximations and the results of the vortex precession
experiments.
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