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We study the relation between distillability of multipartite states and violation of Bell’s inequality. We
prove that there exist multipartite bound entangled states (i.e., nonseparable, nondistillable states) that
violate a multipartite Bell inequality. This implies that (i) violation of Bell’s inequality is not a sufficient
condition for distillability and (ii) some bound entangled states cannot be described by a local hidden
variable model.
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Since the celebrated work by Bell [1], it is evident that
quantum mechanics is not compatible with local realist
theories. In fact, Gisin [2] and Gisin and Peres [3] showed
that all bipartite entangled pure states violate the Bell-
CHSH (Clauser-Horne-Shimony-Holt) inequality [4]. This
rules out the existence of a local hidden variable (LHV)
model which is capable of describing all statistical corre-
lations predicted by quantum mechanics for such states.
These results were readily generalized by Popescu and
Rohrlich [5] to multipartite entangled pure states of arbi-
trary dimension.

However, for quantum systems in mixed states, the situ-
ation is much more complicated, and we still lack a
complete classification of mixed states into “local” and
“nonlocal” ones. Although structural knowledge about
entanglement has increased rapidly in the last decade,
many open questions remain to be answered, in particular
concerning the relation of certain entanglement properties
to the existence of LHV models.

While it is obvious that separable mixed states [6] can
be described by a LHV model, Werner showed in his pio-
neering paper [7] that also a certain class of entangled
mixed states —now called Werner states —do not violate
any Bell-type inequality. This was done by explicitly con-
structing a LHV model which can simulate the results of
any single (i.e., nonsequential) measurement performed at
each side. However, some years later Popescu [8] realized
that also sequential measurements can be considered, and
showed that most of the Werner states exhibit violation
of local realism if sequences of measurements are taken
into account. This so-called “hidden nonlocality” is re-
vealed by a sequence of two measurements, where the first
measurement is used to select a certain subensemble of
pairs —those pairs which produce a specific outcome—
while the second measurement tests the Bell observable
on the subensemble. If the subensemble does not satisfy
Bell’s inequality, then one concludes that the initial en-
semble violates local realism. In fact, applying a similar
reasoning to collective tests of particles [9], it was shown
that all inseparable states of two qubits [10] violate local
realism. More generally, all distillable [11,12] states vio-
late local realism. It is an open problem whether violation
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of Bell’s inequality, which seems to be a rather strong re-
quirement, already implies distillability [13].

While in systems of two qubits all entangled states
are distillable [10] (and thus violate local realism), this
turned out to be false for higher dimensional systems. The
Horodecki [16] discovered states which, although being
nonseparable and thus entangled, are not distillable. Those
states are called bound entangled. The role of bound en-
tangled states is not entirely clear yet. Although they can-
not be useful for any quantum information processing task
directly (since they are nondistillable), it was nevertheless
shown that they allow one to perform certain processes
(e.g., quasidistillation) [17] which cannot be performed us-
ing local operations and classical communication alone. In
particular, it is not known whether bound entangled states
violate local realism or not. This paper is intended to shine
some light on these questions.

We will, however, tackle this problem not in its bipartite
setting but rather in the multipartite setting. To this aim,
we consider N spatially separated parties. A generaliza-
tion of the Bell-CHSH inequality to multipartite systems
is due to Mermin [18], and was further developed, e.g., in
Ref. [19] (see also Ref. [20] for a good overview on Bell
inequalities and entanglement and Refs. [21–24] for some
recent developments). Also the notion of separability and
distillability can be readily generalized to multipartite sys-
tems (see, e.g., Refs. [25,26]). We have that an N-partite
state r is called (fully) separable iff it can be written as a
convex combination of (unnormalized) product states, i.e.,

r �
X

i

jai�party1�ai j ≠ jbi�party2�bij

≠ . . . ≠ jni�partyN�ni j . (1)

If r is not fully separable, it is entangled. Note that fully
separable states are those which can be prepared locally.
Because of the fact that many different kinds of multipar-
tite pure state entanglement exist, there are various kinds
of distillability [26]. We will, however, not distinguish be-
tween those possible kinds of entanglements but rather say
that a state r is distillable, iff (by means of local operations
and classical communication) out of an arbitrary number
of identical copies of a state r some entangled pure state
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can be created. If no entangled pure state whatsoever can
be created, r is nondistillable. As shown in Ref. [25] (see
also [27]), there exist also multipartite bound entangled
states, i.e., states which are not (fully) separable and hence
entangled, but which are nondistillable. Here we investi-
gate multipartite bound entangled states and consider the
relation of their distillability to the existence of a LHV
model. We show that there exist multipartite bound en-
tangled states which violate Bell’s inequality. This means
that on the one hand violation of Bell’s inequality does not
imply distillability, and on the other hand some bound en-
tangled states violate local realism.

In the remainder of this Letter, we consider specific
N -qubit mixed states rN acting on a Hilbert space H �
�C�2�≠N . We consider N parties, A1, . . . , AN , at different
locations, each of them possessing several qubits. The
parties possess M identical copies of rN , where M can be
arbitrarily large. Thus the state of all qubits is described by
the density operator r

≠M
N . This ensures that the parties can

use distillation protocols [12] in order to obtain entangled
pure states between some of them. The states rN we
consider are given by [28]

rN �
1

N 1 1

√
jC� �Cj 1

1
2

NX
k�1

�Pk 1 P̄k�

!
. (2)

We have that jC� is an N-party Greenberger-Horne-
Zeilinger (GHZ) state [29],

jC� �
1
p

2
�j0≠N� 1 eiaN j1≠N �� , (3)

with aN being an arbitrary phase. We denoted by Pk a
projector on the state jfk�, where jfk� is a product state
which is j1� for party Ak and j0� for all other parties, i.e.,
jfk� � j0�A1j0�A2 . . . j1�Ak . . . j0�AN21j0�AN . The projector
P̄k is obtained from Pk by replacing all zeros by ones and
vice versa.

For the states rN (2) we show that (i) the states rN

are bound entangled, i.e., nonseparable and nondistillable
if the number of parties N $ 4; (ii) the states rN violate
the Mermin-Klyshko inequality if the number of parties
N $ 8 and thus cannot be described by a LHV model.

We start out by showing (i), i.e., rN is bound entangled.
One readily verifies that r

TAk

N is a positive operator ; k,
where TAk denotes partial transposition with respect to
party Ak [30]. This already implies that rN is nondis-
tillable [26]. To see this, assume as the opposite that one
can distill some bi- or multipartite entangled pure state. As
shown below (Lemma 1), one can always create by means
of local operations from any multipartite entangled pure
state a maximally entangled bipartite pure state shared be-
tween two of the parties, say Ai and Aj . Thus the resulting
state has nonpositive partial transposition with respect to
parties Ai and Aj, while the initial state rN has positive
partial transposition. Because of the fact that by means of
local operations and classical communication, one cannot
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change the positivity of the partial transposition [17], we
have the desired contradiction; hence rN is not distillable.

On the other hand, rN can easily be seen to be entangled
for N $ 4, e.g., by observing that r

TAk Al
N is not a positive

operator for k fi l and N $ 4. This already implies that
rN is not fully separable, as positivity of all possible partial
transpositions is a necessary condition for (full) separabil-
ity in multipartite systems [25,31]. It remains to show the
announced lemma.

Lemma 1: Given a single copy of an N-party entangled
pure state jF� of arbitrary dimension, one can always cre-
ate with nonzero probability of success by means of local
operations a maximally entangled bipartite pure state
shared among some of the parties.

Proof: One may write jF� in its Schmidt decomposition
with respect to any party Ak . Since jF� is entangled, there
exists at least one party, say A1, where one obtains a mini-
mal number of two nonzero Schmidt coefficients (other-
wise jF� would be a N -party product state). That is,

jF� �
dX

k�0

lk jk�A1 jwk�A2,...,AN , (4)

where �k jk0� � �wk jwk0� � dkk 0 and d $ 2. For sim-
plicity, let us assume that d � 2 and l0 � l1 � 1�

p
2

(this can always be accomplished by a filtering measure-
ment in A1, e.g., using OA1 � l1j0� �0j 1 l0j1� �1j). Now,
either (a) both jw0� and jw1� are product states or (b) at
least one of them, say jw0�, is entangled.

In case of (a), jw0� and jw1� have to be locally orthogo-
nal in at least one location, say at A2 (this is due to the
fact that �w0 jw1� � 0), i.e., jw0� � j0�A2 jx3�A3 . . . jxN �AN

and jw1� � j1�A2 jx̃3�A3 . . . jx̃N �AN . There may exist l loca-
tions Ak , l # N 2 2 for which jxk� � jx̃k�. Each of the
other parties Ak can apply a local filtering measurement
of the form OAk � j0� �x 0

kj 1 j1� �x̃ 0
kj, where �jx 0

k�, jx̃ 0
k��

is the biorthonormal basis to �jxk�, jx̃k��, i.e., �x̃k jx
0
k� �

�xk j x̃
0
k� � 0 and �x̃k j x̃

0
k� � �xk jx

0
k� � 1. One readily

observes that this leads to the creation of a N 2 l party
GHZ state (3), from which, by means of local measure-
ments in the basis �j1�, j2�� where j6� � 1�

p
2 �j0� 6

j1�� at the remaining locations, a maximally entangled
bipartite pure state shared between any two out of the
remaining N 2 l parties can be created deterministically.

In case of (b), one measures in A1 the projector PA1 �
j0� �0j and is left with an entangled state of N 2 1 (or less)
particles. This situation is similar to the one we started
with; however, the number of entangled systems decreased.
One proceeds in the same vein with the remaining systems
until (a) applies, which happens in the worst case if only
two entangled particles are left. Finally, one obtains at
least a maximally entangled bipartite state shared among
two of the parties which concludes the proof of the lemma.

Note that from Lemma 1 follows the nonexistence of a
LHV model for all multipartite entangled pure states of ar-
bitrary dimension which describes properly also sequences
of measurements (see Ref. [5] for the stronger result of
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inconsistency with local realism even for single measure-
ments per site). Following the reasoning of Popescu [8]
(see also [32]) (adopted to the multipartite case), the vio-
lation of Bell’s inequality of subensembles of states (ob-
tained, e.g., by local filtering measurements) ensures that
also the original ensemble violates local realism. Since,
according to Lemma 1, from any multipartite entangled
pure state a maximally entangled bipartite pure state can be
created, which clearly maximally violates Bell’s inequal-
ity, the claim follows.

We now turn to (ii) and show that rN violates the
Mermin-Klyshko inequality for N $ 8. Let aj, a

0
j be two

vectors on the unit sphere which indicate two possible
measurement directions for party Aj . The corresponding
observables are given by Oj � saj , O

0
j � sa0

j
. Up to a

normalization factor, any k-qubit Bell inequality involving
two observables per qubit can be written as

j�Bk�j # 1 , (5)

where Bk � Bk�a1, a2, . . . ,ak , a0
1, a0

2, . . . , a0
k� is the corre-

sponding Bell operator. We consider the Mermin-Kyshko
inequalities [18,19] for N qubits, whose corresponding
Bell operator is defined recursively as [24]

Bk �
1
2Bk21 ≠ �sak

1 sa0
k
� 1

1
2B

0
k21 ≠ �sak

2 sa0
k
� ,

(6)

where B
0
k is obtained from Bk by exchanging all the ak

and a0
k .

We choose the same measurement directions in all N
locations, saj

� sx and sa0
j

� sy ; j, where sx , sy are
Pauli matrices. One readily verifies that in this case BN

can be written as

BN � 2�N21��2�eibN j1≠N � �0≠N j 1 e2ibN j0≠N � �1≠N j� ,
(7)

with bN � p�4�N 2 1�. Using that tr�BNPk� �
tr�BN P̄k� � 0 ; k and tr�BN jC� �Cj� � 2�N21��2 when
fixing the phase aN � bN in jC� (3), we have

tr�BNrN � �
1

N 1 1
2�N21��2, (8)

which fulfills tr�BNrN � . 1 iff N $ 8. Thus the states
rN (2) with the choice aN � p�4�N 2 1� violate the
Mermin-Klyshko inequality for N $ 8 as announced.

To conclude, we have shown that certain multipartite
bound entangled states violate a multipartite Bell inequal-
ity. This implies that (i) violation of Bell’s inequality is not
a sufficient condition for distillability, and (ii) there does
not exist a local hidden variable model for certain bound
entangled states. Note that the states rN for sufficiently
large N violate the Mermin-Klyshko inequality directly,
and no sequence of measurements, eventually performed
on a tensor product of the states, is required to rule out the
existence of a LHV model as in the case of hidden nonlo-
cality. There remain a number of open problems concern-
ing the relation of inseparability to the existence of a LHV
230402-3
model [33]. In particular, it is not known whether all bi-
partite bound entangled states, those with positive partial
transposition as well as the conjectured ones with nonposi-
tive partial transposition [34], can be described by a local
hidden variable model or not.
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