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We investigate quantitatively the so-called “leverage effect,” which corresponds to a negative cor-
relation between past returns and future volatility. For individual stocks this correlation is moderate
and decays over 50 days, while for stock indices it is much stronger but decays faster. For individual
stocks the magnitude of this correlation has a universal value that can be rationalized in terms of a new
“retarded” model which interpolates between a purely additive and a purely multiplicative stochastic
process. For stock indices a specific amplification phenomenon seems to be necessary to account for the
observed amplitude of the effect.
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Several “stylized facts” of financial markets, such as “fat
tails” in the distribution of returns or long ranged volatility
correlations, have recently become the focus of detailed
empirical study [1–6]. Simple agent-based models have
been proposed, with some degree of success, to explain
these features [7]. Another well-known stylized fact is the
so-called “leverage” effect, or volatility asymmetry, first
discussed by Black [8,9], who observed that the amplitude
of relative price fluctuations (“volatility”) of a stock tends
to increase when its price drops. This effect is particularly
important for option markets [5,10,11]: option prices in-
deed reflect the fact that a negative volatility-return corre-
lation induces a negative skew in the distribution of returns
on longer time scales.

Although widely discussed in the economic and econo-
metric literature [12–16], the volatility-return correlation
has been less quantitatively investigated than the volatility
clustering effect (volatility-volatility correlation). For
example, one would like to know if the negative volatility-
return correlation shows a long term dependence similar
to that observed on the volatility-volatility correlation.
Although various single correlation coefficients quantify-
ing the leverage effect have been measured and discussed
within GARCH-like models [13–15], the full temporal
structure of this correlation has never been quantitatively
investigated. The economic interpretation of this leverage
effect is still controversial; a recent survey of the different
models can be found in [14,15]. Even the causality of the
effect is debated [12,14]: Is the volatility increase induced
by the price drop or conversely do prices tend to drop after
a volatility increase? According to Black, a price drop in-
creases the risk of a company to go bankrupt, and its stock
therefore becomes more volatile. On the contrary, one can
argue [12,14] that an increase of volatility makes the stock
less attractive, and therefore pushes its price down. At the
end of this Letter, we discuss the “volatility feedback”
mechanism [15–17].
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In this Letter, we report an empirical study of this
volatility-return correlation both for individual stocks and
for stock indices. We find that correlations are between
future volatilities and past price changes. For both stocks
and stock indices, the volatility-return correlation is short
ranged, with, however, a different decay time for stock
indices (about 10 days) than for individual stocks (about
50 days). The amplitude of the correlation is also differ-
ent, and is much stronger for indices than for individual
stocks. We then argue that the leverage effect for stocks
can be interpreted within a simple retarded model, where
the absolute amplitude of price changes does not follow the
price level instantaneously (as is assumed in most models
of price changes, such as the geometric Brownian motion).
Rather, absolute price changes are related to an average
level of the past price. We then show that this model does
not account properly for the data on stock indices, which
seems to reflect a “paniclike” effect, whereby large price
drops of the market, as a whole, trigger a significant in-
crease of activity.

We will call Si�t� the price of stock i at time t, and
dSi�t� the (absolute) daily price change: dSi�t� � Si�t 1

1� 2 Si�t�. The relative (dimensionless) price change will
be denoted as dxi�t� � dSi�t��Si �t�. The leverage corre-
lation function which naturally appears in the calculation
of the skewness of the distribution of price changes is

Li�t� �
1
Z ��dxi�t 1 t��2dxi�t�� , (1)

which measures the correlation between price change at
time t and a measure of the square volatility at time t 1 t.
In the above formula, brackets refer to a time average and
the coefficient Z is a normalization that we have chosen
to be Z � �dxi�t�2�2 for reasons that will become clear
below.

We analyzed a set of 437 U.S. stocks, constituent of the
S&P 500 index and a set of 7 major international stock in-
dices (S&P 500, NASDAQ, CAC 40, FTSE, DAX, Nikkei,
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and Hang Seng). Our dataset consisted of daily data rang-
ing from January 1990 to May 2000 for stocks and from
January 1990 to October 2000 for indices. We computed
Li both for individual stocks and for stock indices. The
raw results were rather noisy. We therefore assumed that
individual stocks behave similarly and averaged Li over
the 437 different stocks in our dataset to give LS, and over
7 different indices to give LI . The results are given in
Figs. 1 and 2, respectively. The insets of these figures show
LS�t� and LI �t� for negative values of t. For stocks, the
results are not significantly different from zero for t , 0.
For indices, we find some significant positive correlations
up to jtj � 4 days, which might reflect the fact that large
daily drops [that contribute significantly to �dx2

i �t 1 t��]
are often followed by positive “rebound” days.

We now focus on positive values of t. As can be seen
from these figures, both LS and LI are significant and
negative: price drops increase the subsequent volatility —
this is the so-called leverage effect. These correlation func-
tions can be fit rather well by single exponentials:

LS,I�t� � 2AS,I exp

µ
2

t

TS,I

∂
. (2)

For U.S. stocks, we find AS � 1.9 days and TS � 69 days,
whereas for indices the amplitude AI is significantly
larger, AI � 18 days, and the decay time shorter, TI �
9 days. This exponential decay should be contrasted with
the very slow, power-law– like decay of the volatility
correlation function, which cannot be characterized by a
unique decay time [1–6].

Traditional models of asset fluctuations postulate that
price changes are proportional to prices themselves. The
price increment is therefore written as

dSi�t� � Si�t�si�t�ei�t� , (3)

FIG. 1. Return-volatility correlation for individual stocks.
Data points are the empirical correlation averaged over 437 U.S.
stocks, and the error bars are two sigma error bars estimated
from the interstock variability. The solid line shows an expo-
nential fit [Eq. (2)] with AS � 1.9 and TS � 69 days. Note
that LS�0� is not far from the retarded model value 22. The
inset shows the same function for negative times.
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where si�t� is the (time dependent) volatility and ei is a
random variable with unit variance, independent of all past
history. Equation (3) shows that price increments are at
any time proportional to the current value of the price. Al-
though it is true that, in the long run, price increments tend
to be proportional to prices themselves, this is not reason-
able on short time scales. Locally, prices evolve following
buy or sell orders that are expressed as integer number of
shares, and placed around the current price on a discrete
grid of possible prices expressed in dollars (i.e., not in
percent). The very mechanism leading to price changes
is therefore not expected to vary continuously as prices
evolve, but rather to adapt only progressively if prices are
seen to rise (or decrease) significantly over a certain time
window. The model we propose to describe this lagged
response to price changes is to replace Si in Eq. (3) by a
moving average SR

i over a certain time window [18]:

dSi�t� � SR
i �t�si�t�ei SR

i �t� �
X̀
t�0

K�t�Si�t 2 t� ,

(4)

where K�t� is a certain averaging kernel, normalized to
one,

P`
t�0 K�t� 	 1, and decaying over a typical time T .

It will be more convenient to rewrite SR
i as

SR
i �t� �

X̀
t�0

K�t�

"
Si�t� 2

tX
t 0�1

dSi�t 2 t0�

#

� Si�t� 2
X̀

t 0�1

K�t0�dSi�t 2 t0� , (5)

where K�t� �
P`

t 0�t K�t0�. Note that, from the nor-
malization of K�t�, one has K�0� � 1, independently of
the specific shape of K�t�. This will turn out to be cru-
cial in the following discussion. For an exponential ker-
nel, one finds K�t� � at . From Eq. (5), one sees that
the limit a ! 1 corresponds to the case where SR

i �t� is a

FIG. 2. Return-volatility correlation for stock indices. Data
points are the empirical correlation averaged over 7 major stock
indices, and the error bars are two sigma error bars estimated
from the interindex variability. The solid line shows an expo-
nential fit [Eq. (2)] with AI � 18 and TI � 9.3 days. The inset
shows the same function for negative times.
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constant, equal to the initial price Si�t � 0�. Therefore, in
this limit, our retarded model corresponds to an additive
model, where the leverage effect would be trivial: a price
drop obviously leads in that case to an increase in the rela-
tive fluctuations. The other limit a ! 0 (infinitely small
averaging time window) leads to SR

i �t� 	 Si�t� and corre-
sponds to a purely multiplicative model. In the following,
we will assume that the relative difference between Si and
SR

i is small, which is the case when h � s
p

T ø 1 (i.e.,
small relative price changes over the horizon T). For con-
stant volatility [si�t� � s

0
i ] and to first order in h, one

finds [see Eq. (1)]

Li�t� � 22K �t� . (6)

An important prediction of this model is therefore that
Li�t ! 0� � 22. Taking into account the volatility
fluctuations would multiply the above result by a factor
�s2

i �t�s2
i �t 1 t����s2

i �t��2 $ 1. As shown in Fig. 1,
Li�t ! 0� is close to (although indeed slightly below)
the value 22 for individual stocks. We confirmed this
finding by analyzing a set of 500 European stocks and
300 Japanese stocks, again in the period 1990–2000. We
again found an exponential behavior with a time scale
on the order of 40 days and, more importantly, initial
values of Li close to the retarded model value 22: AS �
1.96 days and TS � 38 days for European stocks and
AS � 1.5 days and TS � 47 days for Japanese stocks.
We should emphasize that these numbers (including the
previously quoted U.S. results) carry large uncertainties as
they vary significantly with the time period and averaging
procedure. As a direct test of the retarded model, we stud-
ied the correlation between dxi�t� and �dSi�SR

i �2�t 1 t�.
We find this to be zero within error bars, which should
be expected if most of the leverage correlations indeed
come from a simple retardation effect. Another test of
the retarded model when the volatility is fluctuating is to
study the residual variance of the local squared volatility
�dSi�SR

i �2 as a function of the horizon T of the averaging
kernel. The above value of TS is found to correspond to
a minimum of this quantity.

We therefore conclude that the leverage effect for stocks
might not have a very deep economical significance, at
variance with some recent claims [14–16], but can be as-
signed to a simple “retarded” effect, where the change of
prices is calibrated not on the instantaneous value of the
price but on a moving average of the price. Figure 2, on the
other hand, clearly shows that (i) the “leverage effect” for
indices is much stronger than that appearing for individual
stocks, but (ii) tends to decay to zero much faster with the
lag t. This is at first sight puzzling, since the stock index
is, by definition, nothing more than an average over stocks.
So one can wonder why the strong index leverage effect
does not show up in stocks and conversely why the long
time scale seen in stocks disappears from the index. How-
ever, this is only an apparent contradiction, as can be seen
by studying the (oversimplified [19,20]) one-factor model,
228701-3
where one assumes the following decomposition:

dSi�t� � SR
i �t� �bif�t� 1 ei�t�� , (7)

where f�t� is the return factor common to all the stocks,
bi are some time independent coefficients normalized such
that

P
i bi � N , and ei are the so-called idiosyncrasies,

uncorrelated from stock to stock and from the common
factor f. The market index I�t� is defined as a cer-
tain weighted average of the stocks: I�t� �

PN
i�1 wiSi�t�,

where wi are certain weights, of order 1�N . From linear-
ity, one finds the same relation between the retarded quan-
tities. Neglecting terms of order 1�

p
N, one therefore finds

that dI�t� � IR�t�f�t�. Now, let us assume that there ex-
ists an index specific effect, resulting from an increase of
activity when the market as a whole goes down. Down-
ward moves of indices are indeed conspicuous (they often
make the headline news) and incite nervous investors to
sell their stocks and bargain hunters to buy massively (the
leverage effect on indices is even noticeable on intraday
data). We define the index specific leverage correlation
g�t� as

�f2�t 1 t�f�t�� � 2g�t�s4
I , (8)

where sI 	
p

�f2�t�� is the market volatility. At variance
with individual stocks, we do not have a quantitative model
for g�t�. It should be thought of as an empirically mea-
sured quantity whose normalization is arbitrary; we choose
the factor s

4
I for later convenience. Neglecting terms of

order 1�
p

N, and all mixed effects, we find, for the nor-
malized leverage correlation function for indices,

LI �t� � 22K�t� 2 g�t� . (9)

Therefore, one explicitly sees that the slowly decaying part
K�t� should in fact also appear in LI �t�. However, the
amplitude of this retarded correlation �� 2� is only 10% of
the observed correlation [LI �0� � 18]; hence g�0� 
 16.
We fitted the observed correlation for indices by a sum of
two exponentials, with only the parameters of the “fast”
one left free, the slow one being fixed by fitting individual
stocks. The resulting fit (not shown) was not significantly
different from the single exponential fit of Fig. 2. Given
the amount of noise in the data, it is difficult to prove or
disprove the presence of the slowly decaying correlation.
Nevertheless, we argue that it should be present for rea-
sons of consistency between the index and its constituents.
Conversely, let us estimate the contribution of g�t� to the
individual stock leverage effect. A simple computation
gives, to lowest order in h,

Li�t� � 22K�t� 2 b3
i

µ
sI

si

∂4

g�t� . (10)

Since the market volatility sI is a factor of 2 smaller than
the volatility of individual stocks si [19], the coefficient
in front of g�t� is of order 1�16. So, even though g�0� is
8 times larger than 2K�0�, the influence of the market
228701-3
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leverage effect on individual stocks is effectively sup-
pressed due to a relatively large ratio between the stock
volatility and the market volatility, and by the fast decay
of g�t�. Again, due to the amount of noise in the data, it is
difficult to confirm directly the presence of the g�t� con-
tribution in Li�t�. However, Fig. 1 suggests that a second,
rapidly decaying contribution indeed appears for small t’s.
Therefore, although oversimplified, the one-factor model
allows us to understand why the stock and index leverage
effects do not strongly interfere even if the index is noth-
ing more than an average over all stocks.

In summary, the most important result of this Letter is
the fact that the volatility asymmetry on equity markets
can be rationalized in terms of a retarded model, which as-
sumes that the reference price used to set the scale for price
updates is not the instantaneous price but rather a moving
average of the price over the past few months. This in-
terpretation, supported by the data on U.S., European, and
Japanese stocks, appears to us rather likely, and defines an
interesting class of stochastic processes (first advocated in
[5]) intermediate between purely additive (valid on short
time scales) and purely multiplicative (relevant for long
time scales). Several economical interpretations of this ef-
fect have been proposed [14,15]. One is the volatility feed-
back effect [16], where an anticipated increase of future
volatility by market operators triggers sell orders, which
therefore decrease the price. However, data from option
markets (providing the best available volatility forecasts)
clearly indicate that volatility forecasts are correlated with
observed past volatility [5]. Therefore, the volatility feed-
back effect should also generate a negative correlation be-
tween past volatilities and future prices, in contradiction
with our observations. Finally, the parameters of these
models and of other asymmetric GARCH models must be
tuned to reproduce the order of magnitude of the correla-
tion function that our model naturally predicts. For stock
indices the retarded interpretation breaks down and a spe-
cific “risk aversion” phenomenon seems to be responsible
for the enhanced observed negative correlation between
volatility and returns (and in turn to the strong skews ob-
served on index option smiles). Interestingly, this effect
appears to decay over a few days, in contrast with the
volatility-volatility correlation which extends over several
months or years.
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