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We formulate a theory of doped magnetic semiconductors such as Ga;-,Mn,As which have attracted
recent attention for their possible use in spintronic applications. We solve the theory in the dynamical
mean field approximation to find the magnetic transition temperature 7. as a function of magnetic cou-
pling strength J, carrier density n, and Mn density x. We find that T is determined by a subtle interplay

between carrier density and magnetic coupling.
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Diluted magnetic semiconductors have attracted much
recent attention [1] for their potential use in spintronic
devices. The prospect of carrying out both information
processing and storage on the same chip is an exciting
possibility. For applications it is desirable to find mate-
rials which are ferromagnetic at as high a temperature as
possible, so the discovery [2] of a ferromagnetic transition
with T, as high as 110 K in molecular beam epitaxy grown
Ga;—,Mn,As has inspired a great deal of interest. In ad-
dition to its potential technological significance, the ferro-
magnetism of Ga;—,Mn,As is an important fundamental
condensed matter problem. The cause of ferromagnetism
in Ga;—,Mn, As (and similar materials, e.g., Inj—,Mn, As
where T, = 25-30 K [2]) is controversial: the different
proposed mechanisms [3-9] do not qualitatively agree
with each other. In this paper we present a new theoreti-
cal approach which allows calculation of magnetic transi-
tion temperatures (and other properties) over a much wider

PACS numbers: 75.30.Mb, 71.27.+a, 75.20.Hr

temperature range than had previously been possible and
provides new insights into the factors controlling 7.

It is well established that in III-V systems such as
Ga;—,Mn,As, the Mn ions go in substitutionally at the
cation (Ga) sites and contribute itinerant holes to the GaAs
valence band. The experimental hole density 7 is typically
a small fraction (10% or so) of the Mn concentration
perhaps due to strong localization at As antisite defects [2]
so the Ga;_,Mn,As system could be considered partially
compensated. The Mn ion has a half-filled d-shell and
acts as a § = 5/2 local moment; the itinerant carriers
are locally magnetically coupled to the Mn spins via an
exchange coupling J. Band theory [10] suggests that in
GaAs:Mn J > 0 (antiferromagnetic) for electrons and
J < 0 for holes (relevant case). Our results are indepen-
dent of the sign of J.

It is generally accepted [1-10] that the magnetic semi-

| conductors are described by the model:
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where u labels the relevant bands of the semiconductor (the |

two hole bands in hole-doped GaAs, for example), V, is a
potential arising from randomness in the host lattice (e.g.,
As antisite defects), R; are the positions of the Mn dopants,
W is the (presumably Coulombic) potential arising from
the Mn dopant, JAF is a direct antiferromagnetic exchange
between Mn spins arising from other orbitals unrelated to
the doped holes, J is the local exchange coupling between
the spin of the Mn and the spins of the semiconductor car-
riers, and o is the Pauli matrix. We normalize the 6 func-
tion in the J term to the volume b> = (3.56 A)? per GaAs
unit. The large (S = 5/2) value of the Mn spin justifies
treating the spins classically, so the partition function Z
may be determined by finding the free energy F({S;}) of
holes in a fixed spin configuration and then averaging over
spin configurations, i.e.,
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7 = f{dsi}e—[zl_jJAF(R,‘—Rj)S,'Sj"'F({Si})]/kBT. (2)

The key issue is therefore the evaluation of F({S;}). From
Eq. (1), we see that F is the free energy of noninteract-
ing carriers in a spin dependent potential, which may have
randomness both from the distribution of Mn positions and
from spin disorder. Further, as will be shown explicitly be-
low, the relevant temperatures are small compared to the
hole Fermi energy (Er), so that F is to a good approxi-
mation simply the carrier ground state energy in the given
spin configuration. The crucial quantity governing 7, is
the change in F as the spin configuration goes from disor-
dered to ordered. As we will show below, the change in F

© 2001 The American Physical Society 227202-1



VOLUME 87, NUMBER 22

PHYSICAL REVIEW LETTERS

26 NOVEMBER 2001

involves several competing effects not evident in previous
calculations of T, such as the static mean field theory [5].

In this paper we study in detail the idealized Kondo
lattice model, in which Jaf, V,, and W in Eq. (1) are
neglected. These may easily be included in our formal-
ism, and will be discussed in a future paper. We absorb
the magnitude of the spin into the definition of J and
study first the 7 — O limit of the fully polarized ferromag-
netic state, S; || Z at T = 0. In this state the carriers feel
a spatially varying spin dependent potential with mean
strength o« xJ per GaAs unit cell, for a Mn concentration
x. It leads to a shift in the band offset (upwards for one
species and downwards for the other) proportional to xJ.
For values of J less than a critical value J., the spin de-
pendent potential does not lead to any bound states. The
wave functions are scattering states and the band offset is
of order =xJ. The energy is given simply by filling the
up and down bands to the appropriate chemical potential.
The critical value J. corresponds to a magnetic coupling
strong enough to bind a hole of the appropriate spin to a
Mn site, causing a “parallel-spin” impurity band to split
off from the main band. Sanvito ef al. [10] used the local
spin density approximation (LSDA) and supercell methods
to study Ga;—,Mn,As with a dilute but spatially ordered
Mn lattice. The LSDA prediction for J was stated to be
very close to the critical value needed for impurity band
formation.

We now consider energetics of arbitrary spin configura-
tions. In the small J limit, perturbation theory shows that

8F = %ZJZX(R,-,RJ-)S,- ©S; 3)
ij

with x(R;, R;) the static spin susceptibility computed from
Eq. (1) with J = 0. This is often referred to [3—5] as the
“RKKY” limit although strictly speaking the term RKKY
refers to the behavior of y at distances long compared to
the spacing between carriers and Eq. (3) applies even for
spins closer together than this distance. When Eq. (3) ap-
plies, the ordering wave vector is the one that maximizes
xand T, ~J 2 which is also the static mean field result
[5]. Note that for n greater than a (numerically small but
band-structure dependent) critical value 7., the maximum
in )y is at a nonzero wave vector, leading to a nonferro-
magnetic ordered state.

In the J — o limit, at all times each carrier is bound
to an Mn site with a binding energy proportional to J and
spin parallel to the Mn spin on that site. The dependence of
energy on spin configurations arises because in the para-
magnetic state some hopping processes are blocked [11]
and are therefore set by the impurity bandwidth which is
never large (because the Mn are dilute) and vanishes as
J — o due to the contraction of the Bohr radius of the
bound state. In this limit 7, depends crucially on the im-
purity band filling. For a full impurity band (one carrier
per Mn) no low energy hopping processes are possible in
a fully polarized ferromagnetic state; the ground state for
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a filled or nearly filled impurity band is antiferromagnetic
or phase separated. The static mean field theory [5,6] does
not capture this physics at all, predicting instead a 7. ~ J>
for all J.

We now present a dynamical mean field theory which
gives a reasonable account of the small and intermediate
J regime as well as the crossover to the “impurity band”
regime. It, however, does not adequately treat the band
narrowing arising from extreme wave function localiza-
tion so breaks down at some J > J.. We model the
GaAs:Mn system as a lattice of sites, which are randomly
nonmagnetic (with probability 1 — x) or magnetic (with
probability x). Standard arguments [12] show that the
relevant physics may then be determined from the lo-
cal (m}omentum-integrated) Green function Gﬁ,’f (w) =
b3 f(ng)g[w — EZ’Z((») — £pa] !, Gy is in general
a matrix in spin and band (not shown) indices and de-
pends on whether one is considering a magnetic (a) or
nonmagnetic (b) site. Being a local function, it is the
solution of a local problem specified by the partition
function Zjoc = f dSe S with action Sjoc = 80a B(T —
o (T)cap(t!) + JS - Zaaﬁ Can(X)Oapcqap(x) on the
a (magnetic) site and S}, = ggaﬁ(r — ego (T)eap(r))
on the nonmagnetic (b) site. The a-site mean field
function gy can be written as gg,p = ao + aim - Gup
with m the magnetization direction and a; vanishing in
the paramagnetic state. It is specified by the condition
that the local Green function computed from Zj,., namely
81InZio./8g6 = (g6 — =)~ ! is identical to the local
Green function computed by performing the momentum
integral using the same self-energy. The momentum inte-
gral requires an upper cutoff because the p?/2m disper-
sion given in Eq. (1) applies only near the band edges.
We take the density of states as a semicircle, N(g) =

b3 f(gsTp)gﬁ(s — &,) = V412 — &2/27t> with parameter
t chosen to give a bandwidth of order the full GaAs
bandwidth (~10 eV) implying ¢t ~ 2.5 eV. This choice of
cutoff corresponds to a Bethe lattice in infinite dimensions;
the crucial point is that it has the correct qualitative behav-
ior and correct order of magnitude of the density of states
in the region of order J of the band edge. Then go obeys
the equation g§(0) = gh(w) = w + u — x2([gh(w) +
JS o)) — (1 - x)*g(w)~! where the angular
brackets denote averages performed in the ensemble de-
fined by the appropriate Zj.

The solution of the equation depends crucially on J /1,
x, and T. The inset of Fig. 1 shows the majority-spin
density of states corresponding to the 7 = O ferromag-
netic state. For small J we see the expected shift propor-
tional to xJ. For J > J. = t an impurity band centered
at ~ —J and containing x states is seen to split off from
the main band. The dynamical mean field theory J, is in
good numerical agreement with the results of [10]; this
and the obviously correct qualitative behavior confirms its
reliability in the experimentally relevant regime.
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FIG. 1. Main panel: Density of states at 7 > T, for J
0.5¢, ¢, and 2. Inset: Majority-spin density of states at T
for the same parameter values.

0,
0

As the temperature is increased, the spins disorder and
eventually the magnetic transition temperature is reached.
Above this temperature, g is spin independent. The main
panel of Fig. 1 shows the density of states for 7 > T..
For xJ?/(t*> — J?) < 1 there is a small spin independent
band offset of size xJ?/(t> — J?). For J > t an impurity
band forms, corresponding to carriers locally parallel to
Mn spins.

The ferromagnetic transition temperature 7, may be ob-
tained by linearizing the equation in the magnetic part of
8o, leading to an implicit equation for 7.
| — Z —21%(xJ)*/3

T (80 — 21— 12/g0) — xJ22(5/3 = T2/g5)

C)

where temperature is contained in the Matsubara sum over
the frequency w, on which go depends.

Figure 2 shows the electron density dependence of the
magnetic transition temperature for J = 0.5¢ (less than
the critical value for impurity band formation), J = ¢
(the critical value for impurity band formation), and J =
1.5¢ and 2t (where the impurity band is well formed).
The striking feature, evident in all three curves, is the
nonmonotonic behavior of the transition temperature.
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FIG. 2. Calculated transition temperature vs carrier concentra-
tion for x = 0.05 and various J values as shown.
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This has different origins in different regimes. For xJ?/
(t> — J?) < 1 an analytic solution for T, may be ob-
tained. The details will be presented elsewhere; one
result is that the density n™** at which T, is maximized
is n™ =10 — 3 +272/2 - J4/*)? + 0(J?/
(t> — J?)) = 0.04 — O(J/t). Thus, in this limit the T,
maximum is a consequence of structure in the underlying
electronic susceptibility. The precise position depends
on the cutoff, but is very low. For J > t the physics is
dominated by the spin-polarized impurity band. In this
limit 7, is controlled by the delocalization energy in the
impurity band, and is therefore maximized when the band
is half filled. In a filled impurity band (n = x) no low
energy hopping processes are allowed in a ferromagnetic
state, whereas in an antiferromagnetic state hopping is
allowed with amplitude x'/?z/A where A ~ J is the gap
between the impurity and conduction band. This physics
implies that very near the filled impurity band limit, the
ground state is antiferromagnetic. As A increases the
window of antiferromagnetism decreases.

Figure 3 shows the magnetic transition temperature as a
function of magnetic coupling J for different hole densities
ranging from n, = 0.1/Mn to 1/Mn (in our conventions,
n = xny). The collapse in 7, for the filled band is evident.
The physically evident decrease of T at very large J due to
the decrease of impurity state Bohr radius is not captured
by our model, so we expect that for J > 2t our calculation
overestimates 7.

Figure 4 shows the dependence of 7. on Mn concentra-
tion x for J = ¢, a value of the order of the LSDA estimate.
We see that simultaneous increases in the Mn concentra-
tion (by, say, a factor of 2) and the density (by, say, a factor
of 4) should increase T, by more than a factor of 2.

We compare our results to the predictions of other
means of calculation. The “Weiss mean field theory” [5]
applied to our model predicts 7. = xn'/3J2/t at all n,J.
In the limit xJ2/(r> — J?) <1 and a™" < pn < p™&
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FIG. 3. Calculated T, as a function of the local exchange cou-
pling J for a fixed value (x = 0.05) of the Mn concentration
and for different values of the hole density per Mn ion, nj. T.
saturates as J — o, but as explained in the text, at large J the
T. value is overestimated.
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FIG. 4. Variation of T. with n at various Mn concentration x
and J = 1.

our analytic solution of the equations yields the mean
field result, but we find deviations as J approaches ¢ or
when n exceeds n™ or in the extremely low density
limit n < (xJ2/1)*/2 (not visible in the plots shown here)
where 7. ~ xn. An alternative approach to 7, involves
spin-wave excitations [6,9]. In classical high-spin magnets
at T ~ T, spin waves are excited throughout the Brillouin
zone and T, occurs when the number of excitations (set
by T divided by a typical magnon energy) is large enough.
The present theory may be thought of as a calculation of
a typical (i.e., averaged over the zone) magnon energy
(which is itself determined by the changes in electronic
energy due to spin disorder) on the assumption that the
spin wave excitations have no particular spatial structure.
In d = 3 for T near T, this is correct except for small
amplitude critical fluctuations of no particular energetic
significance. More importantly, our calculation provides
detailed access to the experimentally relevant intermediate
J,n,x regimes and demonstrates the crucial importance
of impurity band formation.

We now briefly discuss numerical estimates of 7. for
GaAs:Mn. We first note that the value of J relevant to the
actual systems is unclear. In a recent band theory calcula-
tion [10], J was defined in terms of the ratio of the T = 0
band splitting to the Mn concentration x. We find that this
ratio strongly depends on the value of J: at J/ = 0.5¢ and
x = 0.05, the splitting is about 3.6x, while at J = 0.75¢
and x = 0.05, it is almost 6x. For a rough estimate we rely
instead on the observation [10] that in band theory, J is
close to the critical value needed for impurity band forma-
tion, i.e., J = t, along with our estimate t = 2.5 eV. Then
from Fig. 2 we see that for n, = 0.1/Mn (n = 0.005) we
obtain a single-band 7, = 70 K. In the multiband mod-
els previously studied [11] the contribution from different
bands add, suggesting a physical system 7, = 150 K. Al-
though our theoretical estimates agree well with the ex-
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perimental 7, [1,2], this agreement should not be taken
too seriously in view of the simplifying approximations of
our model. Increase of n by about 50% will increase T
by a similar amount. Increases in J (if it can be managed)
will also increase T, (although much less rapidly than the
quadratic dependence predicted by the mean field theory).
The most promising route to a higher temperature ferro-
magnet is predicted to be a simultaneous increase in x to
a value of order 0.1 and 7 to about 0.02 or about 0.2/Mn.

In summary, we have presented a theory of the magnetic
semiconductors which can handle both the weak coupling
limit (xJ less than Fermi energy Er) and the intermediate
coupling regime (J > ¢ but not too large). This method
correctly treats the physically relevant situation in which
the carriers are constrained to be locally parallel to the Mn
spins and allows, for example, calculation of the resistiv-
ity and optical conductivity. Discussion of these quantities
will be given elsewhere. Also, the method can be extended
to include the realistic density of states and spin-orbit cou-
pling; work in this direction is in progress.
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