VOLUME 87, NUMBER 22

PHYSICAL REVIEW LETTERS

26 NOVEMBER 2001

Energy Landscapes and the Non-Newtonian Viscosity of Liquids and Glasses
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An inherent structure analysis of viscosity is developed based on results of nonequilibrium molecular
dynamics simulations. The viscosity is separated into a “structural” contribution associated with the en-
ergy minima that the system visits, and a “vibrational” contribution associated with displacements within
the energy minima. The structural contribution is shear thinning due to strain-activated relaxations caused
by the disappearance of high-stress energy minima, while the vibrational contribution is Newtonian.
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The viscosity of liquids, both molecular and colloidal,
generally decreases with increasing shear rate at high shear
rates. This “shear thinning” occurs even for systems com-
posed of spherical particles, as found in experiments on
colloidal systems [1] and simulations of simple molecu-
lar systems [2]. The present investigation addresses the
origins of shear thinning in terms of the potential energy
landscape, using the inherent structure formalism of Still-
inger and Weber [3].

The inherent structure formalism separates the dynam-
ics of liquids into vibrational motion within local poten-
tial energy minima (“inherent structures”), and structural
transitions between different local minima [3]. Material
properties can then be considered as the sum of “struc-
tural” contributions that are evaluated at the local energy
minima that the system visits, and “vibrational” contribu-
tions that are associated with atomic displacements within
these local minima (the local minima that the system visits
are defined as those obtained by steepest-descent quenches
from instantaneous atomic configurations during a mo-
lecular dynamics trajectory [4]). This formalism does not
introduce any approximations, but rather is a method of
dividing effects in a physically meaningful way.

Nonequilibrium molecular dynamics (NEMD) simula-
tions are carried out on a flowing liquid at shear rate vy.
The sllod equations of motion are used with Lees-Edwards
boundary conditions and a Gaussian thermostat [5,6].
The system examined is a binary (80%—20%) mixture of
Lennard-Jones atoms that prevents crystallization [7]. The
Lennard-Jones parameters are g;; and o;; for interactions
between atoms of type i and type j, where €2 = 0.5¢;1,
oy = 088011, €12 = 1.5¢11, and o2 = 0.8011; the
interactions are truncated at the distance of 2.507;; (and
shifted such that the energy is continuous at the truncation
distance). All of the atoms have the same mass m. The
units used throughout the paper are &;; for energy, o1 for
length, &11/kp for temperature, (mo112/e11)"? for time,
e11/o’ for stress, and (me;/o*)Y/2 for viscosity.
The simulations are carried out for N = 500 atoms at the
density p = 1.2, for 10°~10" NEMD steps (depending
on the shear rate) with a time step of 0.01. The shear
stress 7 is calculated during the NEMD trajectory [5], and
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the viscosity u is obtained as u = (7)/7y, where (---)
represents an average over the NEMD trajectory.

The results for the viscosity as a function of shear rate
are shown in Fig. 1. The present results are in good
agreement with previous results for the same system [8].
The viscosity is nearly Newtonian (i.e., constant) for all
shear rates examined at the temperature 7 = 0.7, while
the viscosity is strongly shear thinning (i.e., decreasing
with increasing shear rate) for all shear rates examined at
T = 0.3. At T = 0.5, the viscosity is slightly shear thin-
ning at smaller shear rates, and strongly shear thinning at
higher shear rates. As found previously [8], these driven
systems reach reproducible steady states even at tempera-
tures below the glass transition temperature [this effect
is demonstrated in Fig. 5b (below), which shows that the
same results are obtained from different starting points].

Energy minima that the system visits are found by car-
rying out energy minimizations that begin from instanta-
neous configurations during the NEMD trajectory (these
minimizations do not affect the NEMD trajectory); the en-
ergy minima are found at time intervals of 10-100 (de-
pending on the shear rate). The energy (e) and shear stress
are evaluated at these energy minima, and averaged to
give (e); and (7),, where (- - -); represents an average over
the ensemble of energy minima visited during the NEMD
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FIG. 1. Viscosity as a function of shear rate. Filled symbols are
the present results, and open symbols are results from Ref. [8].
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trajectory. The vibrational contribution to the average
shear stress is determined as (7), = (1) — (7);.

The structural and vibrational contributions to the shear
stress are shown in Fig. 2. The value of (1), increases lin-
early with increasing shear rate for all shear rates; noting
that u = (7)/7, the vibrational contribution is seen to be
Newtonian for all shear rates examined. In contrast, the
value of (7), increases with increasing shear rate at low
shear rates, but then levels off and does not exceed an up-
perbound [9]; again noting that u = (7)/7, the structural
contribution is seen to be shear thinning. The shear thin-
ning of the overall viscosity is therefore attributable solely
to the structural contribution.

To understand why the structural contribution to the
shear stress is shear thinning, zero-temperature time-
independent simulations are run in which the shear strain
is incremented in very small steps, with energy mini-
mizations carried out after each step (these simulations
start from instantaneous configurations during the NEMD
trajectory). As shown in Fig. 3 for a single configuration,
the shear stress and energy at an energy minimum usually
increase continuously with strain, but these increases are
punctuated by discontinuous drops; analogous results have
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FIG. 2. (a) Vibrational contribution and (b) structural contribu-

tion to shear stress as a function of shear rate. Inset to (b) shows
the upperbound of the structural contribution to the average shear
stress, as a function of temperature [in the inset, open symbols
are NEMD results, and the closed symbol is average shear stress
in the zero-temperature (time-independent) simulations].
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also been found in similar simulations on other systems
[10-13]. Our previous investigations have shown that
these discontinuous stress and energy drops occur when
strain causes a local energy minimum to flatten until it
disappears [14-16], as shown schematically in Fig. 4.
Thus the shear stress at energy minima (i.e., the structural
contribution) cannot increase indefinitely with strain,
because energy minima characterized by high stress do
not exist.

If strain causes the disappearance of the energy mini-
mum that the system is in, the system is forced towards
an alternate (lower-stress) energy minimum—these tran-
sitions to alternate energy minima are strain-activated re-
laxations, which can become important at high strain rates.

The temperature dependence of (1), shown in Fig. 2,
can be understood in that higher temperatures increasingly
cause the system to exit an energy minimum by a ther-
mally activated process before the minimum disappears.
In this way, higher temperatures cause (7); to reach its up-
perbound at higher shear rates, and cause this upperbound
to decrease in magnitude. As shown in Fig. 2b, the NEMD
results for the upperbound of (7), extrapolate in the limit
of low temperature towards the zero-temperature result in
which the magnitude of the shear stress is limited solely
by the disappearance of energy minima.

Recent work has shown that, at different temperatures,
a liquid visits different regions of the energy landscape,
characterized by different values of the average energy of
the local minima visited, {e); [17]. The unique correspon-
dence between T and (e); in equilibrium systems defines
an effective temperature T¢; that increases monotonically
with increasing (e), [18]. Our results for {e), as a func-
tion of shear rate and temperature are shown in Fig. 5.
The value of {e), increases with increasing shear rate, in
agreement with previous ideas [8]. At constant shear
rate, (e), increases with increasing T for T = 0.45, but
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FIG. 3. Shear stress and energy (per atom) as a function of
shear strain, for a single configuration that remains at a local
energy minimum. The strain is incremented in steps of 0.0001,
with energy minimizations carried out after each step. These
results are time independent and at zero temperature.
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FIG. 4. Schematic of a strain-induced disappearance of an en-
ergy minimum. The curves represent the potential energy along
the relevant coordinate, and the circles represent the state of the
system. The change in the state of the system denoted by arrow
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¢” corresponds to a strain-activated relaxation process.

decreases with increasing T for T =< 0.45. These results
can be understood as follows: For T' < 0.45, increased T
enables the system to increasingly surmount energy barri-
ers and reach lower energy regions of the landscape (which
partially offsets the shear-induced increase in energy). For
T = 0.45, increased T moves the system to higher energy
regions of the landscape (as in undriven systems [17,18]).
Note that this change in behavior occurs very close to
the mode coupling crossover temperature for this system
(T = 0.435) [7]. Also shown in Fig. 5b is the result for
(e)y from the zero-temperature time-independent simula-
tions, which correspond to NEMD simulations in the limits
T — 0 and y — 0; the NEMD results extrapolate to the
zero-temperature time-independent result in these limits.
Neither the viscosity nor the structural contribution to
the viscosity ({(7);/y) are uniquely determined by (e),
(or equivalently Te¢r), and these quantities do not always
follow the same trends as (e); (results shown in Fig. 5 for
(7)s/v; results not shown for u). Note that the regions
of the energy landscape visited at higher shear rates dif-
fer from those visited at higher temperatures (and y = 0),
in that the energy minima visited at higher shear rates are
characterized by nonzero average shear stress (see Fig. 2),
while the energy minima visited at higher temperatures
(and y = 0) are characterized by zero average shear stress.
The present results can be related to previous results for
shear-rate dependence of the incoherent scattering function
of supercooled liquids [8,19], by noting that the fast decay
of the incoherent scattering function arises from vibrational
contributions to the dynamics, while the slow decay arises
from structural contributions [20]. The previous result that
the fast decay is shear-rate independent [8,19] coincides
with the present result that the vibrational contribution to
the viscosity is shear-rate independent (Newtonian). Also,
the previous result that the time scale of the slow decay
decreases almost proportionally to the shear rate at low
temperature [8,19] can be understood in that the dominant
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FIG. 5. (a) Average energy (per atom) of local minima visited
as a function of shear rate; the lines are guides to the eye. Note
that (e) has a unique and reproducible steady-state value at all
temperatures in these driven systems, in contrast to undriven
systems [18]. (b) Average energy of local minima visited and
the structural contribution to the viscosity as a function of tem-
perature. Circles: ¥y = 0.001; triangles: y = 0.005; diamond:
average energy in zero-temperature (time-independent) simula-
tions. Also shown are results for {e); at T = 0.1, y = 0.001 ob-
tained from simulations beginning from the final configurations of
the runs at 7 = 0.5, y = 0.001 (cross) and 7 = 0.1, y = 0.005
(square); the similarity of the results from the different starting
conditions demonstrates that {e), has a unique and reproducible
steady-state value. (c) Structural contribution to the viscosity as
a function of the average energy of local minima visited.

relaxation processes at low temperature (and high shear
rates) are strain-activated processes, which have rates that
are proportional to the shear rate.
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The shear stress of strongly supercooled liquids is domi-
nated by the structural contribution, which is nearly inde-
pendent of shear rate (e.g., see results in Fig. 2 for low
temperatures). Since the viscosity w = (7)/vy, the vis-
cosity of such strongly supercooled liquids will vary as
w ~ y~'. This result concurs with experimental results
for strongly supercooled liquids that show that g ~ y~!
[21,22].

The rate of strain-activated relaxations is proportional
to the strain rate, and at high strain rates it can become
comparable to the rate of thermally activated relaxations
in a typical liquid. Under such high strain rates, the vis-
cosity becomes comparable to the viscosity of a typical
liquid, even if the undriven system behaves similar to a
glass. Such a result has been found in nanoshock experi-
ments [23], which show that u = 3 GPas for glassy poly-
methylmethacrylate at a strain rate of ~10!° s~! (although
the flow in these nanoshock experiments is not shear flow,
the ideas developed here are expected to apply for all types
of flows).

The picture that emerges from this inherent structure
analysis is similar to the Eyring model for viscosity [24];
the present analysis differs in that it is not phenomeno-
logical, but based on NEMD results and mappings of the
potential energy landscape for a real system. The main
points of this picture, particularly the strain-induced dis-
appearance of energy minima that lead to strain-activated
relaxation processes, arise independently of the NEMD
methodology —evidence for this is that the NEMD results
extrapolate in the limit of low T to T = 0 results obtained
by a different (time-independent) methodology (Figs. 2b
and 5b).

An equivalent description of this physical picture is that
shear flow causes the system to occupy different regions
of the energy landscape, which are characterized by local
minima with both higher energy (Fig. 5b) and higher shear
stress (Fig. 2b). The system moves to these other regions
of the landscape by remaining in a local minimum while
shear strain distorts the local minimum such that its energy
and shear stress increase (Fig. 3); this mechanism will be-
come operative when the shear rate becomes comparable
to the rate of structural transitions between energy minima.
These higher-stress regions have lower energy barriers for
structural transitions that reduce the stress (these energy
barriers decrease to zero as the stress becomes high, as in-
dicated by the discontinuous stress drops in Fig. 3)—these
lower barriers lead to increased relaxation rates, which in
turn decrease the viscosity (shear thinning).
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