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We address the problem of the microscopic reorganization of a granular medium under a compaction
process in the framework of Tetris-like models. We point out the existence of regions of spatial organi-
zation which we call domains, and study their time evolution. It turns out that after an initial transient,
most of the activity of the system is concentrated on the boundaries between domains. One can then
describe the compaction phenomenon as a coarsening process for the domains, and a progressive reduc-
tion of domain boundaries. We discuss the link between the coarsening process and the slow dynamics
in the framework of a model of active walkers on active substrates.
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The phenomenon of granular compaction involves the
increase of the density of a granular medium [1] subject
to shaking or tapping. Triggered by experimental results
of the Chicago group [2], that suggested that compaction
follows an inverse logarithmic law with the tapping num-
ber, several models have been proposed to explain the slow
relaxation features of granular media [3–10]. Although in
all these different cases a very slow relaxation (eventually
logarithmic) is reproduced, an explicit connection between
the above models and a real granular medium is however
still rather tenuous.

The aim of this paper is to elucidate the origin of the
very slow relaxation studying explicitly the microscopic
response of a granular medium subject to shaking. We ad-
dress this problem within the framework of the recently in-
troduced class of Tetris-like models [6] which are known
to reproduce several features observed experimentally in
granular materials such as slow dynamics, segregation, ag-
ing, and hysteresis.

We find, quite surprisingly, that the system reorganizes
under the shaking dynamics into several ordered regions
(see [11,12] for other examples). We call these domains,
and study their time evolution. After a short transient,
most of the activity of the system is concentrated along the
boundaries between domains (we note that this concerns
only a small part of the entire system). Under shaking, the
domain boundaries move throughout the system and free
the vacancies they encounter leading to a progressive den-
sification. Moreover, when two domain boundaries meet,
they annihilate. One can thus describe the compaction phe-
nomenon in this system as a coarsening [13] (i.e., a domain
growth) process. As the system compactifies, the domains
coarsen, and the boundary regions are reduced; thus the
process becomes slower. We give a quantitative description
of this phenomenon studying the behavior of the space-
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time correlation function that is expressed by C�r , t� �
f���r�j�t���� where j�t� is the correlation length, say the
typical size of a domain. This coarsening of domains is
related to the slow compaction process by measuring the
persistence [14] exponent of the phenomenon, as well as
by measuring the activity and the motion of the domain
boundaries.

Let us briefly recall the definition of the Tetris model.
Although this class of models allows for an infinity of par-
ticles types, shapes, and sizes, here we use, without loss
of generality for the main features, a system of elongated
particles. These occupy the sites of a square lattice tilted
by 45±, with periodic boundary conditions in the horizontal
direction (cylindrical geometry) and a rigid plane at its bot-
tom. Particles cannot overlap and this condition produces
strong constraints (frustration) on their relative positions.
The system is initialized by inserting grains at the top of
the system, one at a time, letting them fall down, perform-
ing under the effect of gravity, an oriented random walk on
the lattice until they reach a stable position, i.e., a position
from which they cannot fall further. The effect of vibra-
tions is implemented by means of a two-step Monte Carlo
algorithm mimicking a tapping procedure. The role of the
tapping amplitude is played by a parameter 0 , x , 1 that
describes the strength of the bias in the particle movement,
induced by the gravity (we refer to [6] for the details).

In the simplest version, the Tetris model consists of a
single rodlike type of particle (rectangles of uniform size
a 3 b with a � 0.75 mesh units and b � 0) with two
possible orientations (along the principal axis of the lattice)
chosen to be equally probable. A generic configuration
can be described by assigning to each site of the lattice
�x,y� (0 , x , Lx is the horizontal coordinate and 0 ,

y , Ly is the vertical one), a variable s�x, y, t�, whose
value is 0 if the site is empty and 61 if the site is occupied
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by a particle with one of the two possible orientations. At
every density the system can be resolved into domains, i.e.,
regions in which the staggered magnetization keeps a defi-
nite sign and each domain presents an antiferromagnetic
order with vacancies [11 particles on odd (even) rows and
21 particles on even (odd) rows]. One can then observe
the evolution of the compaction dynamics in terms of the
evolution of the domains.

At the beginning, after pouring the grains into the con-
tainer, i.e., in the so-called loose density state, the system
presents a disordered structure with an alternation of the
two types of domains, even though the domain boundaries
do not as yet span the system from top to bottom. At this
stage the number of domain boundaries depends on the as-
pect ratio (height by width) of the container: the smaller
the aspect ratio (wider is the system) the larger the number
of domains. The domain size is of the order of the height
of the system, and is almost independent of the horizontal
size of the system Lx, as long as Lx . Ly.

The compaction can now be seen as a slow elimination
of the voids frozen in the different domains. Since the
system changes only at the domain boundaries, a void in
the bulk of the domain can be freed only when it comes in
contact with a domain boundary. The domain boundaries
are then the only regions where the activity of the system
is concentrated. Figure 1 shows an example of the time
evolution of the Tetris model resolved in antiferromagnetic
domains [15]. It is important to note how narrow systems
�Lx ø Ly� may display a pathological behavior (blocking)
if the system has an almost single domainlike packing.

Let us now describe the coarsening dynamics in a more
quantitative way. We have monitored the evolution of the
(longitudinal) correlation function defined as

C�r, t� �
1

Np

Ly �2X
y�0

LxX
x�0

s�x, y, t�s�x 1 r, y, t� , (1)

where Np is the number of particles in the bottom half of
the system. A pair of particles inside the same domain
gives a positive contribution to C�r, t� while a pair in dif-
ferent domains gives a negative contribution. With this
definition, the correlation function is not sensitive to den-

FIG. 1. Time evolution of the Tetris model with x � 0.5 re-
solved in antiferromagnetic domains at times (number of taps)
t � 0, 104, and 107 from top to bottom. White squares are
voids, while light gray and dark gray squares represent particles
belonging to the two possible domain types.
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sity changes and reflects only the evolution of the domain
sizes.

We perform extensive simulations of wide systems (to
avoid blocking), and we try a scaling collapse of several
C�r , t� curves at different times: i.e., we look for a char-
acteristic length j�t� such that C�r, t� � f���r�j�t����, the
length j�t� representing the average (horizontal) domain
size. As in standard coarsening dynamics, j�t� grows in
time and when j�t� � Lx the growth stops (blocking for
single domain systems).

However, the height, Ly , of the system is another char-
acteristic scale, and depending on whether j is smaller
or larger than Ly , two different regimes can be observed.
A quantitative analysis of j versus time reveals that for
j�t� , Ly , j�t� ~ t0.25, whereas for j�t� . Ly , we ob-
serve a faster growth: j�t� ~ t0.5 (see Fig. 2).

These results can be interpreted according to the follow-
ing scenario. One can imagine in general that the size S�t�
(area) of the domains grows as a power of time. The cor-
relation length j�t� is a measure of the lateral size of the
domains. Now, as long as the domains grow in an isotropic
way, we can expect the area to scale as S�t� � j�t�2. In
this regime the domain walls, though biased by gravity, do
not yet span the system in the y direction. Later on, when
the domain walls span the system from top to bottom, the
coarsening dynamics is dominated by the diffusion of these
almost vertical walls, which eventually collide and annihi-
late each other. At this stage we expect the area scales
as S�t� � Lyj�t�. The crossover we observe is then com-
patible with a growth S�t� � t1�2 which gives j�t� � t1�4
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FIG. 2. Scaling collapse of (1) for a system with Lx � 800
and Ly � 50, simulated up to a time t � 105 with x � 0.1,
and averaged over 200 different dynamics. j�t� is chosen such
that C���j�t�, t��� � C0 for all curves obtained at different times
for C0 � 0.2 (one gets the same result for a large range of
values of C0). In the inset is shown j�t� vs t for different
values of x � 0.1, 0.5, and 0.9. The crossover occurs at an
x-dependent t� such that j�t�� � Ly . In the second regime one
observes an exponent equal to 0.5 only for x � 0.9 while slightly
smaller exponents are observed for smaller x. We believe these
deviations from an exponent 0.5 are transients evolving towards
the asymptotic diffusive value.
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in the early regime followed by the asymptotic behavior
j�t� � t1�2. The crossover between the first and the sec-
ond regime is evident in the first two pictures of Fig. 1.

How do we relate this coarsening behavior to the den-
sity relaxation? The motion of the domain walls occurs in
a background of vacancies. We observe that regions swept
through by the domain walls compactify by triggering par-
ticle rearrangements, while regions not yet swept through
remain disordered. Thus within each domain there is a
compactified region through which the domain wall has
made several forays, and a disordered loose region through
which the domain wall has not yet swept through. The
compaction process is related to the growth of the dense
ordered regions rather than to the characteristic length of
the domains. The fast dynamics of the domain walls is thus
not in contrast with the slow dynamics of the bulk density.

In order to support this picture we have measured the
fraction of persistent sites (or persistence probability) R�t�
[14], i.e., the fraction of sites that never changed their
status up to time t. If the triggering process mentioned
above was perfectly efficient, i.e., every time a domain wall
passes through a vacancy one triggers a process increasing
the density locally, one would expect that 1 2 r�t� is de-
scribed by R�t�. Otherwise the behavior of 1 2 r�t� is
slower than R�t�. In analogy with recent studies [14] in
standard coarsening models, a very slow algebraic decrease
of such quantities is observed as a function of time; we ob-
tain, in particular, that R�t� (see Fig. 3) scales as t2u with
u � 0.15. The behavior of �1 2 r�t�� vs t is shown in the
inset of Fig. 4. We observe that it is consistent with an al-
gebraic decay 1 2 r�t� � t20.10 with an exponent smaller
than the persistence exponent u which is compatible with
our discussion above.

Additional information on the system can be obtained by
monitoring the following quantities. (1) A�t�: activity in
the system measured as the cumulative number of success-
ful moves; (2) M�t� is intended to measure the mobility of

10
0

10
1

10
2

10
3

10
4

10
5

t

10
-1

10
0

R
(t

)

x=0.1
x=0.5
x=0.9

2 4 6 8 10 12
ln(t)

-0.2

-0.1

lo
ca

l s
lo

pe
s

FIG. 3. R�t� (see text for the definition) vs time for different
values of x. The inset shows the local logarithmic slopes.
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the domain walls. It is obtained by the cumulative sum of
the absolute value of the derivative of the staggered magne-
tization in thin vertical stripes, averaged over all the stripes.
From Fig. 4, which reports the results for both quantities,
one deduces two main things: the activity of the system
is concentrated on the domain walls [since A�t� and M�t�
have the same functional form up to a constant] and both
A�t� and M�t� scale as �1 2 r�t��2b.

In order to get better insight into the above mentioned
phenomenology, it would be very interesting to have a
quantitative understanding of the link between the coars-
ening process and the very slow global density relaxation.
Under the hypothesis that the system is translationally in-
variant in the direction of gravity, the medium is described
as a one dimensional ( y-averaged) density profile, r�x, t�,
in which particles (the domain wall) move. To comply
with our previous description, we assume that the density
r is only susceptible to increase at the positions occupied
by the walkers, and remains quenched elsewhere. More-
over, in order to follow more closely what happens in the
Tetris model we consider a situation where the motion of
the walkers is coupled to the environment, i.e., the local
density via a potential field depending only on the density.
The problem can be cast in terms of two coupled equations:
one describing the overdamped motion of the walkers and
another describing the evolution of the local density as

dX
dt

� 2
≠V �r�x, t��

≠r�x, t�

Ç
x�X�t�

≠r�x, t�
≠x

Ç
x�X�t�

1 G�t� ,

≠r�x, t�
≠t

� f���r�x, t����d���x 2 X�t���� ,

(2)

where G�t� is an uncorrelated Langevin force with
	G�t�
 � 0 and 	G�t�G�t0�
 � qd�t 2 t0�. The potential
V attracts the walker to regions where activity has been
intense, and repels it from unvisited regions.
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FIG. 4. A�t� and M�t� (see text for the definition) vs t for
x � 0.5, Lx � 800, and Ly � 50. Similar results have been ob-
tained with x � 0.1 and x � 0.9. The inset reports �1 2 r�t��
vs t [16].
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A detailed treatment of the above defined equations is
presented elsewhere [17]. Here we summarize the main
features. The function f should be such that r approaches
unity for long times, and hence f�r� ! 0 as r ! 1. An
example of such an f is f�r� � �1 2 r�a, where a is a
positive exponent. The potential V should provide a drift
toward high density regions. A simple suitable form is
V�r� � 2rg. In fact, it is possible to show that the lat-
ter functional form is inessential, provided V �r� behaves
linearly in r as r ! 1. In this way ≠V�r�x,t��

≠r�x,t� becomes con-
stant, i.e., unimportant, as r tends to 1. With these defini-
tions Eqs. (2) can be recast in the form

dX

dt
� F212b=F 1 G�t�,

dF

dt
� d���x 2 X�t���� ,

(3)

where b � 1��a 2 1� and we have introduced the function
F � �1��a 2 1�� �1 2 r�12a which, according to Eq. (3),
represents the cumulative activity on the site x [in general
dF�dr � f�r�]. In this way the choice of the function f
is consistent with the results obtained for A�t� and M�t�
in the Tetris model. The main idea behind this kind of
modeling is that the high density regions (i.e., the potential
wells) tend to trap the walkers that, in their turn, are able to
change the environment, i.e., the local density, though their
efficiency decreases with the increase of the density. From
the combination of these two effects a drastic slowing down
is expected. The way the walkers escape from the potential
wells is to progressively carve their way out by pushing the
potential barrier and so enlarging the compactified region.

Different aspects come into play in the compaction pro-
cess. One of them is related to the fact that initially a
large number of walkers is to be introduced. Since our
modeling concerns only the regime where a one dimen-
sional description is adapted, the typical distance between
walkers is proportional to Ly. However, when two walk-
ers meet, they annihilate, and thus the subsequent increase
of the density becomes less and less effective. The quan-
tification of this effect has been done in a previous sec-
tion, through the pair correlation function of the domains.
By itself, this single aspect is not sufficient to account for
the slow densification observed numerically. The second
aspect concerns the densification due to a single walker.
Starting from a low density for the medium, we observe
that the density does not remain uniform. Starting from
any site, at low temperature, the domain walls first drill
a potential well where they lie. However, as the density
approaches unity, the densification becomes less and less
efficient. The only option for the walkers is to expand in
lateral size through a progressive translation of the well
boundaries. Specific solutions of this regime can be ob-
tained as solitary waves [17]. In this second regime, the
densification rate is controlled by the velocity of the lat-
ters. Finally, the wells tend to coalesce and the mean den-
sity decays as 1 2 r � t21��a21�. Though the variety of
the different phenomena involved in the density evolution
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(number of walkers, width and depth of potential wells, late
stages crossover phenomena) renders difficult the identifi-
cation of the F function in Eq. (3), we retain that the main
features observed in the Tetris model are captured by this
walkers modeling.

It is also important to stress that the equivalence ob-
served between the activity and the motion of the domain
boundaries implies that the same treatment could also be
carried out for particles with random shapes [6]. Here the
existence of domains is no longer evident but the activity
still remains confined and it is not spread out uniformly
over the system. Finally it is worth remarking that our
analysis could be easily exported in an experimental setup
such as the one proposed in [18].
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