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Quantum Anomaly in Molecular Physics
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The interaction of an electron with a polar molecule is shown to be the simplest realization of a quan-
tum anomaly in a physical system. The existence of a critical dipole moment for electron capture and
formation of anions, which has been confirmed experimentally and numerically, is derived. This phe-
nomenon is a manifestation of the anomaly associated with quantum symmetry breaking of the classical
scale invariance exhibited by the point-dipole interaction. Finally, analysis of symmetry breaking for
this system is implemented within two different models: point dipole subject to an anomaly and finite
dipole subject to explicit symmetry breaking.
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In this Letter we establish the existence of a remarkably
simple physical realization of a quantum anomaly in Na-
ture. An anomaly [1,2] is one of the three possible types
of symmetry breaking exhibited by a physical system with
an invariance of some kind —the other two being explicit
and spontaneous symmetry breaking [3]. In particular, it
arises when a classical invariance of a system is violated
upon quantization. Its physical realizations in Nature have
been recognized in high-energy physics since the intro-
duction of the Adler-Bell-Jackiw anomaly [4–6], which
amounts to violation of chiral symmetry. As a practical
tool, this concept has become useful for the analysis of
elementary particles in the standard model [2] and its ex-
tensions [7], as well as in string theory [8]. In addition
to its phenomenological relevance, the study of anomalies
has been the source of numerous theoretical investigations
[1]; for example, (i) in the path-integral formulation, the
chiral-symmetry-breaking anomaly is due to lack of invari-
ance of the functional measure [9]; (ii) in the Hamiltonian
formulation, an operator becomes anomalous when it does
not keep invariant the domain of definition of the Hamil-
tonian [10].

The novel physical realization of a quantum anomaly
that we now consider occurs in the realm of molecular
physics. Specifically, while the consequences implied by
our analysis have been known in the literature for some
time now, their interpretation in terms of the anomaly con-
cept is totally new. Therefore, in this Letter, by studying
this particular realization, we highlight the relevance and
simplicity of the anomaly phenomenon beyond its original
high-energy physics context. In fact, this remarkable in-
terpretation is the central result of our Letter.

Our analysis involves three essential ingredients: (i) the
identification of the relevant symmetry that undergoes an
anomalous breaking; (ii) the renormalization, including di-
mensional transmutation [11,12], of a nonrelativistic in-
verse square potential; and (iii) the subsequent application
of the inverse square potential to the interaction of an elec-
tric dipole with a charge.
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First, the symmetries relevant to our work are identical
to those of the inverse square potential; under time
reparametrizations, they include scale invariance [13],
which is part of a larger conformal symmetry with
SO�2, 1� group-theory structure [14]. Surprisingly, the
relevance of these symmetry analyses for the dipole po-
tential has remained unnoticed despite its central physical
importance in molecular physics. Correspondingly, in this
Letter, we review and adapt the symmetry arguments to
the case of the dipole-charge interaction.

Second, we have recently considered the inverse square
potential using field-theory techniques and shown the ex-
istence of a critical coupling for the onset of dimensional
transmutation [15]. On the other hand, dimensional trans-
mutation has been recently viewed as an example of a
quantum anomaly: that associated with the breaking of
scale invariance [16,17]. However, this anomaly has been
discussed only in the context of the two-dimensional delta-
function potential [18]. In this Letter we show that the con-
cepts of anomaly and dimensional transmutation apply to
the inverse square potential and related physical problems,
including the intriguing electric dipole-charge interaction,
with far-reaching implications in molecular physics.

Third, the nonrelativistic interaction of an electric dipole
with a charge poses a problem whose physical relevance
was first recognized in nuclear physics [19,20] and then in
molecular physics [21–23]. In the traditional treatments
of this problem [24], a key ingredient is the existence of a
critical dipole moment for the capture of the electric charge
by the dipole. This unambiguous prediction of quantum
mechanics has led to a standard lore in molecular physics,
according to which any neutral molecule with a dipole
moment of the order of 2D or greater [25] should be ca-
pable of capturing an electron and sustaining a molecu-
lar anion [26]. Recent experiments [27,28] and numerical
simulations [28] confirm this generic prediction. This im-
mediately leads one to pose the question: what is the origin
of this critical coupling and why is it robust? In this Letter
we shed light on this issue by treating the problem using
© 2001 The American Physical Society 220402-1
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scale invariance and its associated anomaly, dimensional
transmutation.

The interaction of an electric charge Q with a point
dipole p, which we treat nonrelativistically and refer to
as the point-dipole potential, is described by means of

V�r� � Ke
Qp cosu

r2 , (1)

which can be regarded as a generalized inverse square
potential with an anisotropic coupling strength. As usual,
in Eq. (1), the polar angle u is measured from the direction
of the dipole moment, and we assume that the problem
occurs in ordinary three-dimensional space. The coupling
can be rewritten in a dimensionless form

l � 2
2mKe

h̄2 Qp �
p
p0

, (2)

with m being the reduced mass of the system and Ke the
electrostatic constant. In Eq. (2) the characteristic dipole
moment p0 sets the scale for our analysis and is the rele-
vant dimensional parameter whose order of magnitude will
provide an estimate for criticality (charge capture). For
the particular case of an electron interacting with a polar
molecule, Q � 2e (with e being the electron charge mag-
nitude), and p0 � ea0�2 � 1.271D, where a0 is the Bohr
radius and D is the debye [25]. The Hamiltonian associa-
ted with Eqs. (1) and (2),

H � 2
h̄2

2m

∑
=2 1 l

cosu
r2

∏
, (3)

is explicitly scale and conformally invariant, as the analysis
below shows.

The corresponding classical Lagrangian L � my2�2 2
V �r� has an associated action that is invariant under the
scale transformations t ! tt, r ! �r (with t . 0 and
� . 0), �2 � t; this property is shared by the larger class
of homogeneous potentials of degree 22 [12], which also
includes the two-dimensional delta-function potential. In
the language of dimensional analysis, this symmetry means
that the point-dipole potential has no characteristic dimen-
sional scales and the coupling l is dimensionless [29].

The symmetry analysis under time reparametrizations
can be generalized to [30,31] t ! t̃ � t 2 af�t�, r !

r̃�t̃� � Jdr�t�, with J � jdt̃�dtj. Invariance of the action
occurs only when the following two conditions are simul-
taneously satisfied: (i) d � 1�2 and (ii) f�t� is quadratic
in t. This selects the SO(2,1) conformal group, just as for
the inverse square potential [14], the magnetic monopole
[30], and the magnetic vortex [31], with the following three
generators: (i) the Hamiltonian H, Eq. (3), associated with
time translations t ! t 2 a [for f�t� � 1]; (ii) the dila-
tion generator

D � tH 2
1
4 �r ? p 1 p ? r� , (4)

associated with the scale transformation defined in the
previous paragraph, with t � 1 2 a [for f�t� � t]; and
(iii) the conformal generator
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K � Ht2 2
1
2 �p ? r 1 r ? p�t 1

1
2 mr2, (5)

associated with the time special conformal transforma-
tion 1�t ! 1�t 1 a [for f�t� � t2]. The correspond-
ing commutators �D, H� � 2ih̄H, �D, K� � ih̄K, and
�H, K� � 2ih̄D show that these three operators form an
SO(2,1) algebra [32].

We will now examine how scale invariance is broken
at the quantum-mechanical level. This symmetry break-
ing manifests itself in the appearance of a critical dipole
moment, whose existence and numerical value we will es-
tablish next by generalizing our treatment of the inverse
square potential [15]. This goal can be accomplished
by writing the Schrödinger equation for the point dipole
in spherical coordinates, with the separation of variables
C�r, u, f� � u�r�Q�u�eimf�r, where the azimuthal de-
pendence corresponds to conservation of the axial compo-
nent Lz of angular momentum. Then, the corresponding
equations for r and u are explicitly given by

d2u�r�
dr2 1

µ
h 1

g

r2

∂
u�r� � 0 (6)

and

ÂQ�u� � gQ�u� , (7)

where h � 2mE�h̄2,

Â � 2L2 1 l cosu , (8)

and L2 � L2�h̄2 is the dimensionless angular momen-
tum (squared). Equations (6) and (7) constitute a coupled
system of eigenvalue equations linked by the separation
constant g. Notice that Eq. (6) can be interpreted as
defining an isotropic inverse square potential for the zero
angular-momentum channel in three dimensions, with cou-
pling strength lISP � g. In addition, g is implicitly re-
lated to the actual coupling l of the point-dipole potential
by means of the eigenvalue equation (7). This relation can
be obtained by recasting Eq. (7) into matrix form through
the matrix

M�g, l� � 2A�l� 1 g' (9)

(where ' is the identity matrix) and subsequently setting
up the corresponding characteristic equation [21–23]

D�g, l� � detM�g, l� � 0 . (10)

It should be noticed that the existence of symmetry
breaking for the dipole potential can be viewed as a con-
sequence of the corresponding symmetry breaking for the
inverse square potential. As shown in Ref. [15], this quan-
tum anomaly occurs for the inverse square potential in the
supercritical or strong-coupling regime g $ g��� � 1�4
(for l � 0 in three dimensions). It then follows that there
exists a critical value l��� of the dimensionless dipole mo-
ment to be determined from the corresponding critical in-
verse square coupling g��� � 1�4, i.e.,
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D�g���, l���� � 0 , (11)

and such that a quantum anomaly occurs for the strong-
coupling regime l $ l���. A straightforward calculation
shows that l��� � 1.279, which amounts to the familiar
critical dipole moment p��� � 1.625D [19–23]. Exten-
sive empirical and numerical studies have confirmed the
existence of a critical dipole moment of a similar value for
a large number of molecules [27,28]. This remarkable uni-
versal property of polar molecules can be regarded as the
simplest physical example of a quantum anomaly.

The fact that the predictions arising from the quantum
anomaly analyzed in the previous paragraph agree with the
corresponding empirical and numerical findings requires
further elaboration. In effect, a polar molecule is better
modeled as a finite dipole, with an interaction potential

V �r� � KeQq

µ
1

R1

2
1

R2

∂
� Ke

Qp cosu
r2 1 Vsb�r� .

(12)

In Eq. (12) R6 represents the distance to the charge Q
from the positive and negative charges of the dipole, which
are separated by a distance a. Equation (12) displays the
point-dipole potential (1), with p � qa�l � 1�, supple-
mented by a symmetry-breaking potential Vsb�r�, which
includes higher-order multipoles (for l . 1 and r . a�2,
with moments � qal � pal21), as well as the contribu-
tion to the potential for r , a�2. In short, in this model,
the SO(2,1) symmetry of potential (1) undergoes explicit
symmetry breaking by the introduction of additional terms
in the Hamiltonian. The corresponding Schrödinger equa-
tion with potential (12) can be derived by separation of
variables in prolate spheroidal coordinates [33], thus pro-
viding a solution [21–23,34] that illustrates the effect of
adding explicit symmetry-breaking terms.

A priori, it is by no means obvious that the approximate
point-dipole representation captures the correct behavior
and the correct numerical value of the critical dipole mo-
ment. However, as we will show next, this is indeed the
case. In other words, even though the finite dipole intro-
duces a length scale a and amounts to an example of ex-
plicit symmetry breaking, the existence of a critical dipole
moment as well as its numerical value are independent of
a. In fact, this result is confirmed by the explicit solution
of the problem with potential (12). In short, the simplified
point-dipole model exhibits an anomaly, whose relevance
is highlighted by a robust prediction —one that survives
when the finite size of the molecule is considered.

Let us now see the dimensional argument that proves
the statement of the previous paragraph. The characteris-
tic dimensional parameters for the dynamics of the finite
dipole are h̄, m, q, and a, as well as the finite charge
Q; moreover the interaction involves only the product Qq.
Then, according to Buckingham’s Pi theorem of dimen-
sional analysis [35],

Egs � 2
h̄2

2ma2 F�l� , (13)
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where l is the dimensionless combination of the given
parameters that we previously defined in Eq. (2) and F�l�
is an arbitrary function of l. On the other hand, the critical
value of the dimensionless coupling, l���, occurs when
the ground state energy Egs comes into existence going
through a zero value [36]. Thus, the critical dipole moment
is defined by the condition

F�l���� � 0 , (14)

whose solution is a dimensionless number independent of
the size a of the dipole. In particular, the critical value
survives in the limit a ! 0, which amounts to the ideal
point dipole. This shows that the point-dipole model with
anomalous symmetry breaking predicts the correct physics
of the finite dipole, for which the symmetry is explicitly
broken.

In conclusion, we have found theoretical and em-
pirical evidence— further confirmed by numerical
computations —of the existence of a quantum anomaly
in molecular physics. Specifically, this anomaly is mani-
fested by the formation of anions through electron capture
by polar molecules with supercritical dipole moments
and, to our knowledge, represents the simplest realization
of quantum-mechanical symmetry breaking in a physical
system.
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