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We investigate the properties of a coherent array containing about 200 Bose-Einstein condensates pro-
duced in a far detuned 1D optical lattice. The density profile of the gas, imaged after releasing the trap,
provides information about the coherence of the ground-state wave function. The measured atomic distri-
bution is characterized by interference peaks. The time evolution of the peaks, their relative population,
as well as the radial size of the expanding cloud are in good agreement with the predictions of theory.
The 2D nature of the trapped condensates and the conditions required to observe the effects of coher-
ence are also discussed.
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Coherence is one of the most challenging features ex-
hibited by Bose-Einstein condensates (BECs). On the one
hand it underlies the superfluid phenomena exhibited by
these cold atomic gases. On the other hand, it characterizes
in a unique way their matter wave nature at a macroscopic
level. Coherence requires that the system be character-
ized by a well-defined phase, giving rise to interference
phenomena.

After the first interference measurements carried out on
two expanding condensates at MIT [1] the experimental
study of interference in Bose-Einstein condensed gases has
become an important activity of research opening the new
field of coherent atom optics.

The possibility of confining Bose-Einstein condensates
in optical lattices has opened further perspectives in the
field [2]. Bose-Einstein condensates confined in an opti-
cal standing wave provide in fact a unique tool to test at
a fundamental level the quantum properties of systems in
periodic potentials. The observation of interference pat-
terns produced by an array of condensates trapped in an
optical lattice was already used as a probe of the phase
properties of this system [3,4] also allowing to prove the
phase relation in an oscillating Josephson current [5]. In
[3] the interference effect has been used to explore the
emergence of number squeezed configurations in optically
trapped condensates.

The main purpose of this paper is to investigate the
ground state properties of the system of a fully coherent
array of condensates. To this aim we have explored the
interference pattern in the expanded cloud, reflecting the
initial geometry of the sample.

The basic phenomenon we want to explore is the atom
optical analog of light diffraction from a grating. The
analogy is best understood considering a periodic and co-
herent array of identical condensates aligned along the x
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axis. In momentum space the order parameter takes the
form

C�px� � C0�px �
X

k�0,61..6kM

eikpxd�h̄

� C0�px �
sin��2kM 1 1�pxd�2h̄�

sinpxd�2h̄
, (1)

where k labels the different sites of the lattice, 2kM 1 1
is the total number of sites (in the following we will as-
sume kM ¿ 1), and d is the distance between two con-
secutive condensates. The quantity n0�px� � jC0�px �j2 is
the momentum distribution of each condensate [see Eq. (5)
below]. The momentum distribution of the whole sys-
tem, given by n�px� � jC�px �j2, is affected in a profound
way by the lattice structure and exhibits distinctive inter-
ference phenomena. The effects of coherence are even
more dramatic than in the case of two separated conden-
sates [6]. Indeed, in the presence of the lattice the mo-
mentum distribution is characterized by sharp peaks at the
values px � n2p h̄�d with n integer (positive or negative)
whose weight is modulated by the function n0�px�. Dif-
ferently from the case of two separated condensates, in-
terference fringes appear only if the initial configuration
is coherent. In other words, since one single interference
experiment with an array of condensates is equivalent to
averaging a series of interference experiments with two
condensates, an interference pattern will appear only in
the presence of a fixed relative phase between condensates
belonging to consecutive wells. In principle the momen-
tum distribution can be directly measured in situ using
two-photon Bragg spectroscopy. This possibility has been
already implemented experimentally for a single conden-
sate [7]. However, the very peculiar structure of (1) is
© 2001 The American Physical Society 220401-1
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expected to influence in a deep way also the expansion of
the atomic cloud after the release of the trap. The width of
the central peak �n � 0� of the momentum distribution is
of the order of Dpx � h̄�Rx where Rx � kMd is half of
the length of the whole sample in the x direction and the
corresponding atomic motion, after the release of the trap,
will be consequently slow. On the other hand the peaks
with n fi 0 carry high momentum and the center of mass
of these peaks will expand fast according to the asymptotic
law

x�t� � 6n
2p h̄
dm

t . (2)

The occurrence of these peaks is the analog of multiple
order interference fringes in light diffraction.

We create an array of BECs of 87Rb in the jF � 1,
mF � 21� state by superimposing the periodic optical po-
tential Vopt of a far detuned standing wave on the harmonic
potential VB of the magnetic trap. For a more detailed de-
scription, see [8,9]. The resulting potential is given by

V � VB 1 Vopt

�
1
2

m�v2
xx2 1 v2

��y2 1 z2��

1 sER cos2

µ
qx 1

p

2

∂
, (3)

with m the atomic mass, vx � 2p 3 9 Hz and v� �
2p 3 92 Hz the axial and radial frequency of the mag-
netic harmonic potential and x lying in the horizontal
plane. In (3) s is a dimensionless factor, q � 2p�l is the
wave vector of the laser light creating the standing wave
and producing local minima in Vopt separated by d � l�2
and ER � h̄2q2�2m � 2p h̄ 3 3.6 kHz is the recoil en-
ergy of an atom absorbing one lattice photon. By varying
the intensity of the laser beam (detuned 150 GHz to the
blue of the D1 transition at l � 795 nm) up to 14 mW�
mm2 we can vary the intensity factor s from 0 to 5. We cal-
ibrated the optical potential measuring the Rabi frequency
�VR� of the Bragg transition between the momentum states
2h̄q and 1h̄q induced by the standing wave. The inten-
sity factor is then given by s � 2h̄VR�ER [10].

The procedure to load the condensate in the combined
(magnetic 1 optical) trap is the following: we load 87Rb
atoms in the magnetic trap and cool the sample via rf-
forced evaporation until a significant fraction of condensed
atoms is produced. We then switch on the laser standing
wave and continue the evaporative cooling to a lower tem-
perature �T ø Tc�. Typically, the BEC splits over �200
wells, each containing 100 � 500 atoms. After switching
off the combined potential we let the system expand and
take an absorption image of the cloud at different expan-
sion times texp.

In Fig. 1A we show a typical image of the cloud taken at
texp � 29.5 ms, corresponding to a total number of atoms
N � 20 000 and to a laser intensity s � 5. From the im-
ages taken after the expansion we can determine the rela-
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FIG. 1 (color). (A) Absorption image of the density distribu-
tion of the expanded array of condensates. (B) Experimental
density profile (crosses) obtained from the absorption image (A)
integrated along the vertical direction. The wings of the cen-
tral peak result from a small thermal component. The continu-
ous line corresponds to the calculated density profile for the
expanded array of condensates for the experimental parameters
(s � 5 and texp � 29.5 ms).

tive population of the lateral peak with respect to the cen-
tral one. The experimental results for the relative popu-
lation of the first lateral peak as a function of the laser
intensity s are shown in Fig. 2.

The structure of the observed density profiles is well
reproduced by the free expansion of the ideal gas where
the time evolution of the order parameter, in coordinate
space, takes the form

C�x, t� �
1

�2p�3

Z
dpxC�px�eipxx�h̄e2ip2

x t�2mh̄ . (4)

FIG. 2. Experimental (circles) and theoretical (triangles con-
nected by the solid line) values of the relative population of the
n � 1 peak with respect to the n � 0 central one as a function
of the intensity factor s of the optical potential Vopt.
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For a realistic description of C�px� we have improved
the simple ansatz (1) in order to account for the k depen-
dence of the number of atoms Nk contained in each well.
Because of magnetic trapping, the central condensates with
k ø kM will be in fact more populated than the ones oc-
cupying the sites at the periphery. We have accounted for
the modulation by the simple law Nk � N0�1 2 k2�k2

M �2

which will be derived below. For C0 we have made the
Gaussian choice

C0�px� ~ exp�2p2
xs2�2h̄2� , (5)

corresponding, in coordinate space, to C0�x� � exp�2x2�
2s2�. Using (5) it is immediate to find that the relative
population of the n fi 0 peaks with respect to the central
one �n � 0� obeys the simple law

Pn � exp�24p2n2s2�d2� , (6)

holding also in the presence of a smooth modulation of
the atomic occupation number Nk in each well. Result (6)
shows that, if s is much smaller than d the intensity of the
lateral peaks will be high, with a consequent important lay-
ered structure in the density distribution of the expanding
cloud. The value of s, which characterizes the width of the
condensates in each well, is determined, in first approxi-
mation, by the optical confinement. The simplest estimate
is obtained by the harmonic expansion of the optical poten-
tial (3) around its minima: V �

P
k�1�2�mṽ2

x�x 2 kd�2

with ṽx � 2
p

s ER�h̄, yielding s � d��ps1�4�. However
this estimate is not accurate except for very intense laser
fields. A better value is obtained by numerical minimiza-
tion of the energy using the potential (3) and the wave
function (5). This gives s�d � 0.30, 0.27, and 0.25 for
s � 3, 4, and 5, respectively. The predicted results for the
density distribution n�x� � jC�x�j2 evaluated for s � 5
and t � 29.5 ms are shown in Fig. 1B (continuous line).

From the above calculation we can also determine the
relative population Pn of the n � 1 peak as a function of
the intensity factor s. This is shown in Fig. 2 together with
the experimental results. The good comparison between
experiment and theory reveals that the main features of the
observed interference patterns are well described by this
simple model.

The 1D model discussed above can be generalized to 3D
through the ansatz

C0�r� �
X

k�0,61..6kM

fk�x�Ck�r�� (7)

which can be used, through a variational calculation, to
describe the ground state of the system in the presence of
the optical potential, magnetic trapping, and two-body in-
teractions. In the following we will make the Gaussian
ansatz fk�x� � e2�x2kd�2�2s2

. For sufficiently intense op-
tical fields the value of s is not significantly affected by
two-body interactions, nor by magnetic trapping. On the
other hand, interactions are important to fix the shape of
the condensate wave function in the radial direction. Ne-
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glecting the small overlap between condensates occupying
different sites and using the Thomas-Fermi approximation
to determine the wave function in the radial direction we
obtain the result

jCk�r��j2 �

p
2

g
mk

∑
1 2

r2
�

�R��2
k

∏
, (8)

where �R��k �
p

2mk�mv2
�

is the radial size of the kth
condensate, g depends on the scattering length a through
the relation g � 4p h̄2a�m, while

mk �
1
2

mv2
xd2�k2

M 2 k2� (9)

plays the role of an effective k-dependent chemical poten-
tial. The value of kM is fixed by the normalization condi-
tion N �

P
Nk and is given by

k2
M �

2h̄v

mv2
x d2

µ
15

8
p

p
N

a
aho

d
s

∂2�5

. (10)

In Eq. (10) v � �vxv
2
��1�3 is the geometrical average

of the magnetic frequencies, aho �
p

h̄�mv is the cor-
responding oscillator length, and a is the s-wave scatter-
ing length. From the above equations one also obtains the
result Nk � N0�1 2 k2�k2

M �2 with N0 � �15�16�N�kM .
Equations (8)–(10) generalize the well known Thomas-
Fermi results holding for magnetically trapped condensates
[11] to include the effects of the optical lattice.

Neglecting two-body interaction terms in the determi-
nation of the Gaussian width in the x direction is a good
approximation only if mk is significantly smaller than the
energy h̄ṽx. This condition is rather well satisfied in
the configurations of higher lattice potential employed in
the experiment. For example, using the typical parame-
ter N � 5 3 104 for the total number of atoms and the
values v � 2p 3 42 Hz and a�aho � 3.2 3 1023, we
find, for s � 4, ṽx � 2p 3 14 kHz, mk�0 � 2p h̄ 3
0.5 kHz, and kM � 100, corresponding to N0 � 500. No-
tice that with these values the condition mk ¿ h̄v� re-
quired to apply the Thomas-Fermi approximation is rather
well satisfied for the central wells.

The fact that mk turns out to be significantly smaller than
h̄ṽx not only explains why the interference patterns emerg-
ing during the expansion are well described by the ideal 1D
model for the array used above, but also points out the 2D
nature of the condensates confined in each well. In this
context it is worth pointing out that the bidimensionality
of these condensates is ensured up to temperatures of the
order of kBT � h̄ṽx , which is significantly higher than
the expected value of the critical temperature for Bose-
Einstein condensation. Our sample can then be used also to
explore the consequence of the array geometry on the criti-
cal phenomena exhibited by these optically trapped Bose
gases [12].

The above discussion permits us also to explain the be-
havior of the radial expansion of the gas. In the pres-
ence of the density oscillations produced by the optical
220401-3
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FIG. 3. Radial size of the central peak as a function of the
expansion time. Experimental data points are compared with
the expected asymptotic law R� � R��0�v�texp.

lattice the problem is not trivial and should be solved nu-
merically by integrating the GP equation. However, af-
ter the lateral peaks are formed, the density of the central
peak expands smoothly according to the asymptotic law
R��t� � R��0�v�texp, holding for a cigar configuration in
the absence of the optical lattice [13]. In Fig. 3 the linear
law is plotted using the expression R��0� � �R��k�0 �
kMdvx�v� derivable from Eq. (9) for the condensate oc-
cupying the central well. This choice for R��0� is justified
if the population of the lateral interference peaks is small
so that their creation does not affect the radial expansion
of the system.

Let us finally discuss the conditions required for our
system to exhibit coherence. At zero temperature the
coherence between two consecutive condensates in the
array is ensured if Ec ø EJ , where Ec and EJ are
the parameters of the Josephson Hamiltonian for two
adjacent condensates [14]. In particular, Ec � 2≠mk�
≠Nk is the interaction parameter while EJ � �h̄2�m� 3R

dr�jCkCk11j �fk≠fk11�≠x 2 fk11≠fk�≠x�x�0 is the
Josephson parameter describing the tunneling rate through
the barrier separating two consecutive wells. In our case
(s � 4 and N � 5 3 104) we find Ec � 2p h̄ 3 1 Hz
for the most relevant central condensates �k ø kM�
while, by solving numerically the Schrödinger equation
in the presence of the optical potential Vopt of Eq. (3),
we find EJ � 2p h̄ 3 250 kHz. The value of EJ is so
large that one can safely conclude that the ground state
of the system is fully coherent and that the effects of the
quantum fluctuations of the phase will be consequently
negligible. This reflects the fact that, even for the largest
values employed for the laser power, the overlap between
consecutive condensates is not small enough. The value of
EJ is also much higher than the values of kBT used in the
experiment, so that also the effects of the thermal fluctua-
tions of the phase of the condensate can be ignored. This
suggests that the fringes associated with the expansion
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of the condensate will remain visible up to the highest
values of T , corresponding to the critical temperature
for Bose-Einstein condensation. We have carried out
experiments at different values of T where the signal
obtained by imaging the expanding cloud can be naturally
decomposed in two parts: an incoherent component due
to the thermal cloud which is parametrized by a classical
Gaussian Boltzmann distribution, and a Bose-Einstein
component exhibiting the interference effects discussed
above. In our experiment the interference peaks are
visible up to kBT � 2p h̄ 3 3 kHz. In order to point out
the effects of the fluctuations of the phase one should
lower the value of EJ by orders of magnitude. This can
be achieved by increasing significantly the laser power
generating the optical lattice. Such effects have been
recently observed in the experiment of [3].

In conclusion, we have investigated the consequences
of coherence on the properties of an array of Bose-
Einstein condensates. We have observed peculiar inter-
ference patterns in the density of the expanded cloud,
reflecting the new geometry of the sample and discussed
on a theoretical basis some key features exhibited by these
optically trapped gases. Further studies in this direction
include the possible effects of thermal decoherence [15,16]
in the presence of tighter optical traps and the emergence of
2D effects in the thermodynamic properties of these novel
systems.
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