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The stability of large magnetization motions in systems with uniaxial symmetry subject to a circularly
polarized radio-frequency field is analytically studied. Instability conditions valid for arbitrary values
of the amplitude and frequency of the driving field are derived. In the limit of small motions, these
conditions yield Suhl’s theory of spin-wave instabilities for the case of ferromagnetic resonance. It is
shown that the input powers capable of inducing spin-wave instabilities are bounded from both below
and above, so that large enough motions are always stable. In addition, it is demonstrated that stability
of uniform motions depends on their preparation history.
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One of the central problems in ferromagnetism is the
description of the various magnetization processes that set
in when the external field is slowly reversed starting from
saturation. In ideal single-crystal ellipsoids, free energy
minimization shows that the magnetization is spatially uni-
form at saturation. Magnetization reversal is then stud-
ied by analyzing the stability of the uniform-magnetization
state when the external field is slowly varied. Loss of sta-
bility may occur through uniform or nonuniform deviations
from saturation [1].

To what extent a similar picture holds under rapidly
varying fields is still an open problem. In particular, it
is not clear under what conditions there may exist stable
dynamic states analogous to static saturation, in the sense
that large spatially uniform magnetization motions are re-
alized. The main obstacle lies in the strongly nonlinear
nature of the Landau-Lifshitz-Gilbert (LLG) equation gov-
erning the magnetization dynamics [2]. The problem is
important in order to understand the nature of dynamic
states in driven magnetic systems. At the same time, it
has relevant technological implications. In fact, magnetic
response in magnetic recording and magnetotransport ap-
plications crucially depends on the maximum range over
which the magnetization can follow rapidly varying fields
in a coherent fashion [3].

Spatially uniform dynamic states were originally dis-
cussed in relation to ferromagnetic resonance. Initially,
it was assumed that a spatially uniform radio-frequency
field would certainly induce a spatially uniform magnetic
response. Later, it became clear that, because of the non-
linear nature of LLG dynamics, at sufficiently high input
powers spatially uniform motions could get coupled to
certain spin-wave modes, giving rise to complicated
nonuniform magnetization configurations [4,5]. The main
limitation of this analysis is that it was carried out for
excited states close to static saturation. In this Letter, we
present results for systems with uniaxial symmetry subject
to fields of arbitrary amplitude and frequency. It would
seem quite natural to suggest that if uniform motions are
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already unstable for weak excitations, they will be even
more so under larger ones. However, this is not the case.
Under large motions, the nature of the spin-wave perturba-
tions is altered by the fact that they must remain orthogonal
to the uniform motion at all times, in order to preserve the
magnetization magnitude Ms. This physical mechanism
affects the parametric resonance conditions govern-
ing instability and yields the remarkable consequence
that the input powers capable of inducing spin-wave
instabilities are bounded from both below and above,
that is, large enough uniform motions are always stable.

The problem we study is that of a nonconducting fer-
romagnetic body subjected to a spatially uniform external
field. The excitation conditions are such that displacement
currents can be neglected. The body is of spheroidal shape,
with uniaxial crystal anisotropy along the spheroid symme-
try axis. The symmetry axis and the perpendicular plane
will be denoted by the symbols “k” and “�,” respectively.
The magnetization M obeys the LLG equation coupled to
magnetostatic Maxwell equations. The LLG equation is
written in the following dimensionless form:

≠m
≠t

2 am 3
≠m
≠t

� 2m 3 heff , (1)

where m � M�Ms , heff � Heff�Ms, time is measured in
units of �gMs�21, Ms is the saturation magnetization, g

is the absolute value of the gyromagnetic ratio, a is the
damping constant, and m has zero normal derivative at the
body surface. The effective field is given by

heff � ha��t� 1 hM 1 �hak 1 kmk�ek 1 =2m , (2)

where k is the anisotropy constant, ek is the unit vec-
tor along the symmetry axis, and spatial coordinates in
the Laplacian =2m are measured in units of the exchange
length lEX �

p
2A�m0M2

s (A is the exchange stiffness con-
stant). The magnetostatic field hM is obtained by solving
Maxwell equations with appropriate boundary conditions.
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Finally, the external field consists of the circularly polar-
ized radio-frequency component ha��t�, of amplitude ha�

and angular frequency v, and of the dc component hakek.
It is quite remarkable that the problem described by

Eqs. (1) and (2) always admits spatially uniform time-
harmonic solutions for arbitrary values of hak, ha�, and v

[6]. These solutions, termed P-modes, represent dynamic
states in which the magnetization m precesses around the
symmetry axis ek in synchronism with the field. There-
fore, a P-mode is simply identified by the deviation u of
m with respect to ek and by the lag angle f of m� with
respect to ha�. These angles obey the equations [6]

n �
hak 2 v

cosu
1 keff , (3)
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n2 �
h2

a�

sin2u
2 a2v2, (4)

where n � av cotf and keff � k 1 N� 2 Nk (N� and
Nk are the body demagnetizing factors). It is the ex-
istence of these explicit formulas for P-modes that en-
ables one to study their stability in rigorous terms. Let
us assume that a given P-mode of magnetization mP is
slightly distorted by the perturbation Dm. The perturba-
tion preserves the magnetization magnitude, which means
that Dm ? mP � 0. For this reason, we use the unit vec-
tors e1 and e2 parallel to dmP�dt 3 mP and dmP�dt,
respectively, as time-varying basis vectors: Dm�r, t� �
a1�r, t�e1�t� 1 a2�r, t�e2�t�. After substitution of mP 1

Dm into Eq. (1), linearization with respect to Dm, and use
of Eqs. (3) and (4) for mP , one obtains
µ

1 a
2a 1

∂
≠

≠t

µ
a1

a2

∂
�

µ
0 1

21 0

∂ µ
DhM1

DhM2

∂
1

µ
2av cosu 2n 1 N� 1 =2

n 2 N� 2 =2 2 k sin2u 2av cosu

∂ µ
a1

a2

∂
, (5)
where �DhM1, DhM2� are the components of the perturba-
tion magnetostatic field along e1 and e2, respectively.

The study of Eq. (5) for a generic perturbation is
difficult. However, the most relevant perturbations are
expected to be thermally generated spin waves of the
form Dm�r, t� � cq�t� cos�q ? �r 2 rq��. The main limi-
tation is that plane-wave perturbations are generally not
compatible with the boundary conditions of the problem.
However, boundary conditions will produce additional
magnetostatic fields that are concentrated in a thin bound-
ary layer with thickness �l, which yields negligible
effects if l ø L, where L measures the typical linear
dimensions of the body [4]. Therefore, our analysis will
hold for jqj $ qmin, where qmin � 2plEX�L. In addition,
we will study uniform perturbations Dm�r, t� � c0�t�,
for which boundary conditions can be exactly taken into
account with no difficulty. Spin waves of wavelength
close to the atomic scale cannot be treated by the con-
tinuous semiclassical approach underlying Eq. (1). Their
presence is indirectly taken into account through the
values assumed for the saturation magnetization Ms and
the damping constant a [7].

By substituting a1,2�r, t� � cq1,q2�t� cos�q ? �r 2 rq��
into Eq. (5) and by calculating the magnetostatic field
DhM due to = ? Dm inside the body, one finds

d
dt

µ
cq1

cq2

∂
� Aq

µ
cq1

cq2

∂
1

1
1 1 a2

µ
1 2a

a 1

∂

3 �R1�t� 1 R2�t��
µ

cq1

cq2

∂
, (6)

Aq �
1

1 1 a2

µ
1 2a
a 1

∂

3

µ
2av cosu 2nq

nq 2 kq sin2u 2av cosu

∂
, (7)
R1 � 2
sin2uq

2

µ
sinu sinvt 0

sin2u cosvt 2 sinu sinvt

∂
, (8)

R2 �
sin2uq

2

µ
cosu sin2vt cos2vt

cos2u cos2vt 2 cosu sin2vt

∂
, (9)

where uq is the angle between q and ek and

nq � n 2 N� 1 q2 1
sin2uq

2
, (10)

kq � k 2 1 1
3 sin2uq

2
. (11)

Uniform perturbations obey the much simpler equation
dc0�dt � A0c0, c0�t� � �c01�t�, c02�t��, where A0 is for-
mally identical to Eq. (7), with n and keff in place of nq

and kq, respectively.
The key information about spin-wave instabilities is

carried by the one-period map [8] associated with Eq. (6).
Given the fundamental matrix solution Cq�t� of Eq. (6),
with Cq�0� � dij, the one-period map Mq is defined as
Mq � Cq�2p�v�. Stability is controlled by the eigenval-
ues of Mq, the characteristic multipliers m6. The system
becomes unstable whenever jm1j $ 1 or jm2j $ 1.
Therefore, one can immediately determine the stability
of all P-modes with respect to any particular spin-wave
perturbation by numerical integration of Eq. (6) (see
Fig. 1). According to the general properties of one-period
maps, detMq � m1m2 � exp�2p trAq�v�, provided R1
and R2 have zero average over one period. Therefore, the
system is always unstable for trAq . 0. On the contrary,
for trAq # 0 one observes a remarkably rich pattern
typical of parametric resonance [9], with instability
concentrated along Arnold tongues. The origin of this
result can be comprehended by analyzing the structure of
Eq. (6) in the region trAq # 0.

Let us first study Eq. (6) when one neglects R1 and R2.
In that case the equation has constant coefficients and can
217203-2
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FIG. 1. Gray region: P-modes unstable with respect to spin-
wave perturbations with q2 � 0.01 and sinuq � 0.3, determined
by numerical integration of Eq. (6). Parameters: N� � 0, k �
0, a � 0.01, v � 0.8. Dashed lines: vq � 0, vq � 6v�2,
vq � 6v, where vq is given by Eq. (13). Numbers 1 through
4: parametric resonance order n.

be completely solved by standard methods. The associated
one-period multipliers, m

�0�
6 , are given by

m
�0�
6 � exp

µ
p trAq

v

∂ µ
cos

2pvq

v
6 i sin

2pvq

v

∂
, (12)

v2
q �

1
�1 1 a2�2

∑µ
nq 2 kq

sin2u

2
2 a2v cosu

∂2

2 �1 1 a2�k2
q

sin4u

4

∏
, (13)

where v2
q � detAq 2 �trAq�2�4 by definition. Equations

formally identical to Eqs. (12) and (13), with v0, A0, n,
and keff in place of vq, Aq, nq, and kq, respectively,
also describe stability with respect to uniform perturba-
tions. Equation (13) represents the spin-wave dispersion
relation in the time-dependent basis �e1, e2�. This rela-
tion explicitly depends on cosu and cotf, i.e., on the par-
ticular P-mode considered, as a consequence of the fact
that we deal with elementary excitations above far-from-
equilibrium driven modes. According to Eq. (12), the sys-
tem becomes unstable for v2

q # 2�trAq�2�4.
When R1 and R2 are included in the analysis, the equa-

tion for Cq�t� becomes an equation with time-varying
coefficients for which no general solution is known. Nev-
ertheless, an approximate result can be obtained by a series
expansion of which we were able to calculate the zeroth-
order and first-order terms in closed form. As a result, we
found for the characteristic multipliers:

m
�1�
6 � exp

µ
p trAq

v

∂

3

µ
cos

2pvq

v
6

q
Z2

q 2 1 sin
2pvq

v

∂
, (14)

where Zq � K1��v2�4 2 v2
q� 1 K2��v2 2 v2

q�, K1 and
K2 representing certain regular functions of cosu and n.
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The similarity with Eq. (12) is striking. According to
Eq. (14), the system becomes unstable for negative v2

q,
in a region which represents the first-order correction
to v2

q # 2�trAq�2�4. In addition, parametric instability
becomes possible around vq � 6v�2 and vq � 6v,
where Zq ! ` (dashed lines in Fig. 1). Indeed, we
verified that Eq. (14) reproduces remarkably well the de-
tailed structure of Arnold tongues determined numerically
(Fig. 1).

The first-order calculation predicts five instability re-
gions associated with vq � 2v, 2v�2, 0 (i.e., nega-
tive v2

q), v�2, v. Figure 1 shows that the 2v instability
plays an irrelevant role. The other four would be described
by the typical parametric resonance sequence [9] nv�2,
n � 1, 2, 3, 4, in a time-independent vector basis, because
the basis �e1, e2� is rotated at the angular frequency v. In
principle, also instabilities with n � 5, 6, . . . are possible.
However, they are expected to be much weaker, because
they come from higher-order terms of the series expansion.
In addition, their appearance may be ruled out by the lim-
ited range of variation of cosu. We verified numerically
that they are absent for v � 0.8 and a � 0.01 and start
to play some limited role for v � 1 and a & 0.001.

The complete P-mode stability diagram is obtained by
combining the diagram for uniform perturbations [i.e.,
trA0 $ 0, v

2
0 # 2�trA0�2�4] with all the diagrams for

spin waves with 0 # sin2uq # 1 and q2 $ q2
min. Remark-

ably, the only place where q2 appears in the entire analy-
sis is Eq. (10). Therefore, given the stability diagram for
a particular value of sinuq and q2 � q2

min, all the dia-
grams for larger values of q2 are immediately obtained
by a simple downward shift in the �cosu, n� plane. Fig-
ure 2 shows the result of this analysis for a thin film disk
with negligible crystal anisotropy. P-modes in region U
are made unstable by uniform perturbations, those in re-
gions S12 and S34 by spin-wave parametric resonance of
order n � 1, 2 and n � 3, 4, respectively. Figure 3 was
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FIG. 2. P-mode stability diagram for a soft thin film disk.
Parameters: N� � 0, k � 0, a � 0.01, v � 0.8, q2

min � 0.01.
U: P-modes unstable with respect to uniform perturbations. S12
and S34: P-modes unstable because of spin-wave parametric
resonance of order n � 1, 2 and n � 3, 4, respectively. Points
A through E are indicated for the sake of comparison with Fig. 3.
Detailed structure of S12 for cosu � 1, not visible in the figure,
results in regions I and II of Fig. 3.
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FIG. 3. Regions S12 and S34 of Fig. 2, as they appear in the
�hak, ha�� plane. Bottom: Magnified view of ferromagnetic
resonance region. R: Riemann cut. CD: foldover segment.
I and II: first-order and second-order Suhl’s instabilities.

obtained by using Eqs. (3) and (4) to transform Fig. 2
from the P-mode plane �cosu, n� to the control plane
�hak, ha�� of interest in experiments. Remarkably enough,
regions S12 and S34 fill out only a limited part of the
control plane. This occurs because the system is stable
for large positive n (see Fig. 2), as a result of the ab-
sence of high-order parametric instabilities. In thin films
(N� � 0), the approximate location of the upper instabil-
ity boundary of Fig. 2 can be estimated through Eqs. (10)
and (13) by neglecting terms proportional to a2 and by as-
suming that kq , 0 for the spin-wave modes responsible
for the vq � v instability: n # nq # vq � v. By in-
serting this result into Eqs. (3) and (4), one concludes that
the system can be unstable only if h2

a� # v2 sin2u and
�hak 2 v�� cosu 1 keff # v. Whenever the excitation
conditions are outside this range, the system will certainly
be stable.

The transformation from Fig. 2 to Fig. 3 is not one to
one, because there are two or four P-modes associated
with each pair �hak, ha�� [see Eqs. (3) and (4)]. Therefore,
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P-mode properties in the �hak, ha�� plane are defined on
a Riemann surface with two or four folded sheets. If one
considers a P-mode which is stable in the limit hak ! 1`
and then slowly decreases hak, one will encounter S34 but
not S12 if one remains above the line R of Fig. 3. This line
acts as a Riemann cut in the control plane. Region S12 lies
on a different sheet of the Riemann surface and can be
reached only by approaching the line R from below. This
is the region where first-order (I) and second-order (II)
Suhl’s instabilities [4] occur. Finally, the system undergoes
uniform loss of stability when it crosses the segment CD.
This segment identifies the conditions for which foldover
[10] is observed in ferromagnetic resonance experiments.
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