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We consider quasiparticles of a clean d-wave superconductor in the vortex lattice state. For vortex
lattices that are inversion symmetric, the quasiparticle bands are found to have a Dirac cone dispersion
at zero energy, within the linearized approximation. Upon going beyond the linearized approximation
by including the effect of the smaller curvature terms, the Dirac cone dispersions acquire a small gap
that scales linearly with the applied magnetic field (�0.5 K T21 in YBa2Cu3O6.9). When the “chemical
potential” for quasiparticles lies within the gap, quantization of the thermal Hall conductivity, kxy�T �
n�p2k2

B�3h�, with n � 62, 0, is predicted at low temperatures.

DOI: 10.1103/PhysRevLett.87.217004 PACS numbers: 74.25.Fy, 74.60.Ge
Since the experimental verification of the dx22y2 nature
of superconductivity in the cuprate materials [1], there
has been much activity in studying the physics of quasi-
particles in a d-wave superconductor. In contrast to the
s-wave case, the d-wave superconducting gap vanishes at
points on the Fermi surface leading to low energy quasi-
particles that behave like massless Dirac fermions. One
question that is of great interest is the behavior of these
quasiparticles in the mixed state—a problem that is both
theoretically rich and of relevance to explaining several dif-
ferent experiments. This problem has been considered by
several authors. Gor’kov and Schriffer, and Anderson [2]
proposed a Landau-level– like spectrum, while Franz and
Tesanovic computed the quasiparticle band structure for a
perfect lattice of vortices [3] in the linearized approxima-
tion, which was followed by the detailed studies in [4],
while topological issues were highlighted in [5].

Here too we consider d-wave superconductors in the
mixed state, assuming the presence of a vortex lattice and
ignoring disorder. We use a combination of symmetry ar-
guments and analytical calculations to derive the nature
of the low energy quasiparticle spectrum, as well as con-
sequences for thermal Hall transport (which are well de-
fined even in a clean system) in the low temperature limit.
Our main result is the following: under appropriate condi-
tions, d-wave superconductors in the mixed state will dis-
play a quantized thermal Hall conductance (kxy�T � 62,
0 in appropriate units) that sets in at temperatures be-
low a certain characteristic energy scale. This energy
scale and its dependence on various physical parameters
are derived.

In the following we assume that there are well-defined
quasiparticle excitations in the superconducting phase of
the cuprates, and these are described by a Bogoliubov–
deGennes (BdG) equation with a d-wave gap. We are in-
terested in the effect of relatively weak magnetic fields
(�1 T ø Hc2), for which the separation between vortices
is much larger than the vortex core size. Hence we neglect
the effect of the cores, i.e., the amplitude modulation of the
order parameter. Finally, we assume that the vortices are
arranged in a perfect vortex lattice and ignore the effects
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of disorder. Then, the BdG equations for d-wave quasi-
particles in the mixed state are

HBdGc � Ec , (1)

HBdG �

"
e��� �p 2 e �A� �r���� ei�f�2�D� �p�ei�f�2�

e2i�f�2�D� �p�e2i�f�2� 2e���2 �p 2 e �A��r����

#
,

where �p � 2i �=, �A is the vector potential, and f��r� is the
phase of the order parameter. We assume for simplicity a
quadratic dispersion e�p� �

1
2m p2 2 EF and a d-wave

gap function with the nodes along the coordinate axes
D�p� �

D0

p2
F
pxpy . The two-component quasiparticle wave

function c�r� � �u�r�y�r��T is a linear superposition of
particle and hole states. We now consider a gauge trans-
formation to eliminate the phase variation of the order pa-
rameter, i.e., transform to the London gauge, which can be
accomplished by the unitary operator U � e2�i�2�f��r�sz.
The transformed Hamiltonian UHBdGU21 takes the
simple form

H0
BdG � e���2i �= 1 �Ps� �r�sz���sz 1 D�2i �=�sx , (2)

where the s ’s are in the usual representation, and �Ps �
1
2

�=f 2 e �A, a gauge invariant quantity, is the mechanical
momentum carried by each member of the Cooper pair at
point �r. We will sometimes refer to this quantity as the
superflow, though this terminology is not quite accurate.
In the presence of elementary hc�2e vortices, it must be
noted that the unitary transformation U, and hence c 0,
are not single valued, but change sign on circling an odd
number of such vortices. This is a consequence of the
Berry phase factor of (21) acquired by quasiparticles on
circling an elementary vortex.

In the interest of clarity we first consider a vortex lattice
of hc�e vortices for which the transformed wave function
c 0 is single valued, and so only the effect of the super-
flow �Ps needs to be taken into account. Armed with an
understanding of this simpler situation, we then discuss
the more involved but physically important case of hc�2e
vortices in a lattice. Nevertheless, in both cases we ob-
tain the same results. As discussed in [6], we can restrict
our attention to the quasiparticle excitations near the four
© 2001 The American Physical Society 217004-1
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gap nodes. Thus, expanding the wave function of the low
energy excitations about the nodal points, for example, for
excitations near the nodal point at �p � �pF , 0� we write
c��r� � eikFxc1��r�, where the function c1 varies slowly
on the scale of the Fermi wavelength. Ignoring internode
scattering, we obtain the linearized problem for this node,
H1c1 � Ec1, with

H1 � yF�pxsz 1 a21pysx 1 x̂ ? �Ps� �r�1	 , (3)

where a � EF�D0 is the anisotropy. The linearized part
above dominates over the remaining terms (curvature
terms) of the Hamiltonian in (3), for sufficiently low
temperatures and weak fields. In YBa2Cu3O6.9 (YBCO)
this parameter window corresponds to T ø 200 K and
magnetic fields less than a few tesla. The curvature terms,
DH,

DH �
1

2m
�p2 1 �P2

s � �r��sz 1
1

2m
� �p?, �Ps��r�	1

1
D0

p2
F

pxpysx ,

though small, are crucial to providing a nonzero thermal
Hall response [6], and we will include their effects sub-
sequently. To summarize briefly the results of the forth-
coming discussion, the linearized Hamiltonian is found to
possess an additional symmetry, TDirac, that leads to Dirac
nodes (band touchings) at certain special points in the
Brillouin zone. For inversion symmetric vortex lattices,
there is a Dirac node centered at zero energy. Finally, upon
including the effect of the smaller curvature terms, a gap is
opened at these nodes which can lead to a quantized ther-
mal Hall conductivity.

The linearized problem for a lattice of hc�e vortices.—
We analyze the linearized Hamiltonian for node 1,
[Eq. (4)] for an arbitrary lattice of hc�e vortices. Since
the superflow �Ps��r� generated by this vortex lattice is a
gauge invariant physical quantity, it is a periodic function
with the same periodicity as the lattice. This gives rise to
a band structure for the quasiparticles, and the eigenstates
are labeled by the band index and the crystal momentum
(�k), which takes values within the Brillouin zone.

A symmetry of the linearized problem.—We now point
out a crucial symmetry of the linearized Hamiltonian. Con-
sider an eigenstate c �k of the linearized Hamiltonian H1

with eigenvalue E and crystal momentum �k: H1ck �
Eck . Then the transformed wave function

f2 �k � tc
�
�k

(4)

is easily shown to also be an eigenstate with energy E
but crystal momentum 2�k. Here t is the dimension-two
antisymmetric matrix t � isy . Since the transformation
(5) is formally equivalent to the time reversal operation
for Dirac particles, we will call it TDirac, although, as ex-
plained below, it is distinct from the physical time reversal
transformation for this problem. This symmetry ensures
that states with crystal momentum �k and 2�k have the same
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energy. At those points in the Brillouin zone which are
taken to themselves (modulo a reciprocal lattice vector)
under time reversal, there is a degenerate pair of states c�k
and tc

�
�k
. These states are orthogonal, from the antisym-

metry of t . Hence at these special points in the Brillouin
zone, which are at the zone center ( �k � 0; G point), the
zone corners (M point), and the center of the zone edges (A
and B points), the spectrum is composed entirely of de-
generate pairs.

The symmetry operation TDirac that operates on the
quasiparticle excitations at a single node is distinct from
the physical time reversal operation, which transforms
states at one node into states at the opposite node. Rather,
invariance under TDirac is obtained as a consequence of
linearizing the electron dispersion; it is easily seen that
the subdominant curvature terms, such as, for example,
1

2m p2sz, violate this symmetry.
Dirac cones from degenerate doublets.—As we move

away from the special points in the Brillouin zone at
which degenerate doublets are found, the crystal momen-
tum splits these states and gives rise to a Dirac cone, i.e.,
the energy dispersion of a massless Dirac particle. To see
this, consider a pair of degenerate states [c��r�, tc���r�]
at one of these special points in the Brillouin zone. The
effect of moving away from this point by crystal mo-
mentum d �k can be accounted for by adding the piece
dHdk � yFdkxsz 1 yDdkysx to the Hamiltonian and
leaving unchanged the boundary condition for the wave
function. If the deviation in crystal momentum is small
(compared to the reciprocal lattice vectors), this additional
piece can be treated in degenerate perturbation theory with
in this two-dimensional subspace. Although an explicit
calculation requires a knowledge of the wave functions,
a few observations can be made right away. The per-
turbation above splits the previously degenerate pairs of
states—they now have energy 1dEdk and 2dEdk rela-
tive to the degenerate doublet. Also, given that we con-
sider the first order perturbation in dHdk, the strength of
the splitting varies linearly with jd �kj. Hence we can write
dEdk � yFA�udk� jd �kj, where A�udk� is the velocity an
isotropy factor, which depends on the angle udk that the
vector d �k makes with the kx axis. Calculating A�udk�,
however, requires explicit knowledge of the wave func-
tions. We recognize this as the dispersion of an anisotropic
massless Dirac particle, i.e., a Dirac one.

Inversion symmetry and the Dirac node at zero
energy.— If the vortex lattice possesses inversion sym-
metry, that is, if it is invariant under the transformation
�r ! 2�r (assuming the origin is the center of inver-
sion), then it is easy to see that the superflow satisfies
�Ps�2�r� � 2 �Ps��r�. This leads to a particle-hole sym-
metry of the linearized Hamiltonian. If c�x, y� is an
eigenstate of the Hamiltonian H1 (4) with energy E, then
c�2x,2y� is also an eigenstate, but with energy 2E.

Inversion symmetry ensures there is a degenerate
doublet of the linearized Hamiltonian H1 at zero energy
217004-2
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at the G � �k � 0� point. The argument is as follows:
let us focus on the spectrum at the G point, in which
case we need to solve for the eigenstates of H1 on the
unit cell with periodic boundary conditions, i.e., on a
torus. Consider the case without the Doppler term, that
is, a free Dirac particle on a torus, with the Hamiltonian
Hfree � yFpxsz 1 yDpysx which can easily be solved.
Clearly, this has a pair of states at zero energy, given by the
product of the constant solution times any spinor. The rest
of the states also occur in degenerate pairs, and for every
pair of states at energy E fi 0 there is a pair of states at
energy 2E; a consequence of the free Dirac Hamiltonian
respecting the TDirac and inversion symmetries. Thus, in
the free case, the spectrum consists of an “odd” number
of degenerate pairs, due to the existence of the pair at zero
energy (this can be made more rigorous by introducing
an ultraviolet cutoff, and hence a finite number of states).
Now, turning on the Doppler term x̂ ? �Ps for inversion
symmetric vortex lattices preserves the TDirac as well as
particle-hole symmetry. Therefore the states appear as de-
generate doublets, in a particle-hole symmetric spectrum.
Since the total number of pairs of states cannot change
from the free case, we are forced to have a degenerate
doublet at zero energy. Then, the total number of pairs of
degenerate states remains odd, as it was for the free case.
Notice that this argument is also valid perturbatively if the
value of the Doppler term is continuously turned up from
zero. The doublet of states at zero energy for inversion
symmetric lattices will give rise to a Dirac cone centered
at zero energy, by our previous arguments. Thus, here we
have been able to access the qualitative nature of the low
energy physics solely via the use of symmetry arguments.
The velocities entering the dispersion, however, can be
strongly renormalized from the pure system values.

Lattice of hc�2e vortices.—We now briefly discuss how
the preceding arguments for the simpler case of double
vortices need to be modified for the physically interesting
situation of a lattice of elementary vortices. The new fea-
ture that needs to be included is the Berry phase factor of
(21) acquired by quasiparticles on circling a hc�2e vor-
tex. This may be accomplished by the Franz-Tesanovic
transformation [3]; a fictitious U(1) gauge field �a that
couples minimally to the quasiparticles is introduced, and
delta function solenoids of fictitious flux 6p are attached
to the hc�2e vortices. The need for careful regulariza-
tion when using this transformation with the linearized
approximation is discussed elsewhere [7]. The linearized
Hamiltonian for this case may be obtained from (4) by the
substitution �p ! �p 1 �a. Now it appears that TDirac is
no longer a symmetry of the linearized equations since it
transforms �a ! 2 �a. However, since we have the special
case of p fluxes, and are only interested in the Aharonov-
Bohm phases they generate, this sign change corresponds
to a trivial gauge transformation. Thus, the combination
of a gauge transformation and TDirac leaves the linearized
Hamiltonian invariant. We can use this symmetry to derive
precisely the same conclusions, regarding doubly degener-
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ate states at special points in the Brillouin zone as before,
for the case of hc�e vortices. Further, for inversion sym-
metric vortex lattices, we can argue as before that there is
a pair of degenerate states at zero energy. Note, however,
that here the argument is nonperturbative in nature; the de-
generate pairs are obtained only for the special value 6p

of fictitious flux. Thus, for the case of an inversion sym-
metric hc�2e vortex lattice as well, there is a Dirac node
centered at zero energy in the linearized approximation.

Beyond the linearized approximation.—We now con-
sider the effect of the subdominant curvature terms (DH)
on the spectrum obtained from the linearized equations.
For simplicity, we consider a vortex lattice of hc�e
(double) vortices. The physically relevant case of the hc�
2e vortex lattice is very similar. In view of the smallness of
these curvature terms, their primary effect will be to lift de-
generacies that are present in the spectrum of the linearized
problem. Therefore we study the effect of these terms near
the Dirac cones (band touchings) of the linearized problem.
Since the curvature terms are not invariant under TDirac
they split the degenerate pairs of states. This splitting can
be calculated within degenerate perturbation theory; the
effective Hamiltonian in the vicinity of these points is
now that of a massive Dirac particle with mass mD, with

dispersion dEdk � 6

q
�y2

FA2�udk�jd �kj2� 1 m2
D, where

the Dirac mass term mD is induced by the curvature
terms DH.

Of particular interest is the case of an inversion sym-
metric vortex lattice, where we have seen that there is a
Dirac node at zero energy, which is the position of the
quasiparticle chemical potential (ignoring Zeeman split-
ting). Upon including the effect of the curvature terms, a
gap develops, and the low energy spectrum is like that of
a massive Dirac particle. It is well known that in two di-
mensions massive Dirac particles, with the negative energy
branch completely filled, exhibit a quantized Hall effect at

zero temperature [8,9]; sxy �
1
2

e2
D

h sgn�m�, where eD is
the charge associated with the Dirac particle, and m is the
mass appearing in the Dirac equation. The quasiparticle
problem with the chemical potential in the gap is topo-
logically identical to this system of free Dirac particles
with a mass term. In other words, the two systems can be
continuously deformed into each another without closing
the gap at the chemical potential. Superconductor quasi-
particles of course do not carry a well-defined electrical
charge, however, for the case of interest the component of
the quasiparticle spin along the applied magnetic field is
conserved. Hence a quantized spin Hall effect will result
[10,11], and, as a consequence of the Widermann-Franz
law that relates thermal and spin conductivity at low tem-
peratures in a superconductor, the thermal Hall coefficient
(kxy) will also be quantized. More precisely the ratio
of kxy from each node, and temperature T , will take on

the value kxy�T !
1
2 � p2

3
k2

B

h � sgn�mD� in the limit of low
temperatures. The total thermal Hall conductivity receives
contributions from all four nodes. It is easily seen from the
217004-3
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intrinsic particle-hole symmetry of the BdG equations that
the contribution from opposite nodes is always of the same
sign. Thus, two situations can arise. First, when all nodes
contribute to the thermal Hall coefficient with the same
sign, then kxy�T � 62�p2

3
k2

B

h �. Second, when the pair
of nodes 1, 1̄ contribute with the opposite sign from the
pair 2, 2̄, then kxy�T � 0. The first case is topologically
equivalent to a homogeneous dx22y2 1 idxy superconduc-
tor, while the second case is equivalent to a thermal insula-
tor. Which of these two situations is realized is a function
of the anisotropy (a) and the geometry of the vortex lattice
[12]. In both cases the longitudinal thermal conductivity
vanishes (kxx�T ! 0) at low temperatures. The tempera-
tures below which the quantization is seen is set by the
value of the gap, that is, the magnitude of the Dirac mass
term. The typical size of the gap may be estimated as fol-
lows: ignoring the last term in DH (which arises from the
gap curvature, and is smaller than the preceding terms by
a factor of D0�EF), the Dirac mass induced by DH can be
written in the form mD � x

h̄eB
2m , where x is a constant of

order unity, whose magnitude and sign depend only on the
anisotropy (a) and the geometry of the vortex lattice. The
mass term thus scales linearly with magnetic field. For the
case of YBCO this scale is roughly of order �0.5 K T21.
An accurate calculation of the induced Dirac mass, fol-
lowing the procedure described in the previous paragraph,
requires a numerical computation of the zero energy wave
functions of the linearized theory. A concrete calculation
in a model system can be found in [7].

When comparing with experiments, the effect of the
Zeeman splitting, which plays the role of chemical po-
tential for the quasiparticles, needs to be taken into ac-
count. The Zeeman energy has the same linear scaling
with applied field and similar magnitude (0.7 K T21) as the
induced gap jmDj. Quantization in the clean system is ob-
served if the gap exceeds the Zeeman energy. Then, the
effective gap that sets the temperature scale below which
these effects are observed is given by jmDj 2 jEZ j. Cal-
culating jmDj in a real system, to an accuracy that will
allow a comparison with EZ , is a difficult proposition re-
quiring detailed knowledge of the microscopic parameters
of the material. Therefore we do not attempt it here, but
simply note that obtaining a Dirac mass that exceeds the
Zeeman splitting is a distinct possibility in the cuprates. In
addition, the presence of weak disorder can make the quan-
tization more robust by localizing the states and increasing
the gap between the extended states. With strong disor-
der, however, a completely different analysis that does not
rely on the Bloch nature of the quasiparticle states will be
required. We now turn to the relevant experiments in one
particular d-wave system.

Currently, low temperature thermal Hall measurements
on YBa2Cu3O7 [13] in a field of 14 T, go down to a tem-
perature of about 12 K, which is presumably still too high
to observe the quantization, should it exist. Indeed, al-
though the measured kxy�T at a given temperature is found
to saturate for stronger fields, the value at this plateau is
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not quantized, but scales as T . Even so, it is an intriguing
fact that the plateau value of kxy at the lowest temperature
measured is very close to what would be expected from a
quantized thermal Hall conductance of jkxy�T j � 2 (in
appropriate units). While this experiment is not conclusive
with regard to the low temperature state of the quasi-
particles, specific heat measurements down to 1 K in
magnetic fields of 14 T in YBa2Cu3O7 [14] show no
evidence of a gap. Further, low temperature T , 0.1 K
longitudinal thermal conductivity measurements in fields
up to 8 T in YBa2Cu3O6.9 [15] reveal kxx�T saturating to
a nonzero value that rules out a quantized thermal Hall
effect in this material down to these low temperatures.
Thus, for the case of YBCO, either the Zeeman splitting
causes the chemical potential to lie outside the gap region
or else the vortex lattice in this case is so disordered that
the perfect lattice assumption we start with requires seri-
ous modification. Nevertheless, given the large number of
potentially different experimental systems with a d-wave
gap that are available, it is not unreasonable to expect that
the quantized thermal Hall effect, realized in the manner
described, will be observed in the future.
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