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Quantum Phase Slips in Superconducting Nanowires
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We have measured the resistance vs temperature of more than 20 superconducting nanowires with
nominal widths ranging from 10 to 22 nm and lengths from 100 nm to 1 um. With decreasing cross-
sectional areas, the wires display increasingly broad resistive transitions. The data are in very good
agreement with a model that includes both thermally activated phase slips close to 7, and quantum
phase slips (QPS) at low temperatures, but disagree with an earlier model based on a critical value of
Ry/R,. Our measurements provide strong evidence for QPS in thin superconducting wires.
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According to the Mermin-Wagner theorem [1], super-
conducting long-range order is impossible in a strictly one-
dimensional system. Here we ask how superconductivity is
extinguished as a superconducting wire is made narrower
and narrower. Although thermally activated phase slips
dominate near the superconducting transition temperature
(T,), our measurements confirm the dominant role of quan-
tum phase slips (QPS) below T ~ T,/2.

Phase slips give rise to resistance in a thin superconduct-
ing wire below T,.. During a phase slip, the superconduct-
ing order parameter fluctuates to zero at some point along
the wire, allowing the relative phase across the point to
slip by 27, resulting in a voltage pulse; the sum of these
pulses gives the resistive voltage. In a theory developed by
Langer, Ambegaokar, McCumber, and Halperin (LAMH)
[2], such phase slips occur via thermal activation as the
system passes over a free-energy barrier proportional to
the cross-sectional area of a wire. Experiments on 0.5 um
diameter tin whiskers confirmed the theory [3].

Subsequently, Giordano [4] observed in thin In and PbIn
wires a crossover from the LAMH behavior near T, to a
more weakly temperature dependent resistance tail at lower
temperatures. He attributed this tail to phase slips occur-
ring via macroscopic quantum tunneling (MQT), or QPS,
through the same free-energy barrier. However, interpreta-
tion of these results has been complicated by the possibility
of granularity in these metals that could give rise to a simi-
lar temperature dependence. Additionally, Sharifi et al.
[5] found in homogeneous Pb wires a systematic broaden-
ing of the transition with decreasing cross-sectional areas
of the wires that could not be explained by the LAMH
theory, but no crossover to a more weakly temperature
dependent regime was observed. Thus it is controversial
whether such quantum phase slips have been observed in
experiments. Theoretically, it is also a subject of debate
whether resistance arising from QPS is actually observable
[6-9]. Certain theories imply that QPS should be impor-
tant when the wire diameter is about 10 nm [7], but such
thin wires are extremely difficult to fabricate by conven-
tional electron beam lithography.

To address this question, we have developed a new fab-
rication technique [10]. In this Letter we report measure-
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ments of a large number of amorphous MoGe wires with
various widths and lengths. A systematic broadening of the
superconducting transition with decreasing cross-sectional
areas is observed, which can be described quantitatively
by a combination of thermally activated phase slips close
to T, and QPS at low temperatures. Using a simple model
with only two free parameters of order unity for the entire
family of curves, surprisingly good fits of the data over a
wide range of samples are obtained, thus providing con-
vincing experimental evidence for quantum phase slips.

The nanowires are fabricated by sputtering 4—5 nm of
Moy 79Geg21, followed by 1-2 nm of germanium (as a
protective layer against oxidation), onto carbon nanotubes
or ropes which are suspended across slits on SiN/SiO, /Si
substrates [10]. The slits have widths of 100, 150, 250,
350, and 550 nm. The wires we measured have apparent
widths ranging from 10 to 22 nm, and lengths from
100 nm to 1 um, as determined from scanning electron
microscopy (SEM) images. These nominal widths are
overestimates because the Ge protective layer is included
in the image, and because of the resolution limit of
the SEM.

One concern in studying ultrathin wires is possible granu-
larity in samples. However, our MoGe wires are believed
to be homogeneous and nongranular because (i) it is known
that MoGe is amorphous and can be electrically continuous
down to 1 nm in thickness [11], (ii) the wires’ measured
Ry do not differ significantly from that calculated from
their geometry and bulk resistivity values, and (iii) TEM
images of wires prepared under similar conditions did not
reveal any granularity [10]. Fluctuations in the sample
width are about 1 nm in size as seen in TEM images.
We also believe that the underlying nanotubes do not con-
tribute to the dc conductance of the nanowires [12—14],
because the nanowires’ measured normal resistances agree
with that calculated from their geometry and bulk resistiv-
ity values with no correction from the nanotubes.

The samples’ resistances are obtained from measured
slopes of the current-voltage characteristics. The biasing
current /p had a frequency of 0.1 Hz and an amplitude of
3 nA. Doubling or halving the amplitude did not change
the slope, showing that /g was indeed within the linear part
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of the I-V curve. Over 20 samples were measured, and
Fig. 1 shows the resistance vs temperature curves for rep-
resentative samples (those not shown here have similar be-
haviors and are omitted to reduce clutter). For each curve,
the first sharp drop is due to the superconducting transition
of the coevaporated thin film electrodes, which were un-
avoidably included in the measurements of the nanowires
and underwent a sharp transition at about 5-5.5 K. Since
transitions of the wires occur at lower temperatures and are
considerably broader, the measured resistance of a sample
below the film 7, can be attributed solely to the nanowire.
In particular, the normal state resistance of the wire (Ry) is
taken to be the measured resistance just below the film 7.
Note that any proximity effect on a wire from the super-
conducting banks is not significant, since Cooper pairs can
diffuse only a distance £y into a dirty normal metal, where
&y = JAD/2mwkT < 8 nm for MoGe, much shorter than
our wires. (D = 0.5 cm?/s is the diffusion constant [11].)

Our previous measurements of wires roughly 150 nm
long suggested that the wires were superconducting
(resistances decreased rapidly) if their tofal normal state
resistance Ry < R,, and insulating/metallic (resistances
barely changed with temperature) if Ry > R,, where
R, = 6.5 k) is the quantum resistance for pairs [10].
In contrast to this apparent simple dichotomy in the
previous results, the R-T curves in Fig. 1 display a broad
spectrum of behaviors, including some superconducting
samples with resistance as high as 40 k) (>R,). These
data on a more comprehensive set of samples lead to
a different conclusion from the previous results, since
it indicates that the relevant parameter controlling the
superconducting transition is not the ratio of R,/Ry, but
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FIG. 1. Resistances as a function of temperature for eight dif-

ferent samples. The samples’ normal state resistances and lengths
are 1: 14.8 kQ, 135nm; 2: 10.7 k€, 135 nm; 3: 47 kQ), 745 nm;
4: 17.3 kQ, 310 nm; 5: 32 k2, 730 nm; 6: 40 k2, 1050 nm;
7: 10 kQ, 310 nm; 8: 4.5 k(), 165 nm.
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appears to be resistance per unit length, or equivalently,
the cross-sectional area of a wire. This is illustrated by the
solid lines in Fig. 2, which plots R/L vs t = T /T, tiim,
the temperature normalized to film 7. Here resistances of
wider wires (Ry/L < 20 ) /nm) drop relatively sharply
below T, fiim, whereas the transition widths broaden
with increasing values of Ry/L, and resistances of the
narrowest wires (Ry/L > 80 () /nm) barely change with
temperature down to 1.5 K.

To understand this systematic broadening of the transi-
tions of the wires with decreasing cross-sectional area A,
we first consider the LAMH theory, which explains re-
sistive transitions in terms of proliferation of thermally
activated phase slips over a free-energy barrier AF pro-
portional to A. This leads to a resistance below T

7h*Q —AF/kT
202kT € . M

where QO = (L/€)(AF/kT)"/2(1/7gL) is the attempt fre-
quency, and AF = (8+/2/3) (H?/8m)A¢ is the energy
barrier. In these expressions, L is the length of the wire,
Hc and ¢ are the thermodynamic critical field and the
coherence length of the material, T is the temperature, k
is the Boltzmann constant, and 7gp. = [7A/8k(T, — T)]
is the characteristic relaxation time in the time-dependent
Ginzburg-Landau theory. Equation (1) predicts negative
curvature of logR(T) for all values of T and unmeasur-
ably small resistances for t = T/T,. < 0.3 even for the
narrowest wires we measured; neither of these predictions
agree with the majority of the data.

This discrepancy between predictions of LAMH theory
and our data leads us to consider the possibility of MQT
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FIG. 2. The solid lines are the data showing the measured re-
sistance per unit length vs normalized temperatures. The dotted
lines are curves calculated using Eq. (3) and sample parameters.
The two free parameters used are a = 1.3 and B = 7.2 for the
whole family of the curves.
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of phase slips. A heuristic argument due to Giordano
[4]suggests that the resistance from MQT follows a form
similar to (1), except that the appropriate energy scale is
h/7gL instead of kT. Therefore, we expect

WﬁZQMQT
2e2(fi/ 7o)

where Qmor = (L/€)[AF/(i/76L)]Y*(1/76L), and a
and B are possible numerical factors of order unity. MQT
causes phase slips even as T — 0 and results in experi-
mentally measurable resistance at all temperatures for suf-
ficiently narrow wires. Therefore the total resistance in the
superconducting channel will be R amua + Rmot. How-
ever, unless this is small compared to Ry, current carried
by the parallel normal channel will significantly reduce the
observed resistance. To take account of this in a simple
way, we take the total resistance predicted by our model
to be

Ruvor = B TeAFTa/h 2)

R =[Ry' + (RLamu + Rvor) 'T7". 3)

To compare Eq. (3) directly with the data, we note that
the dominant exponential terms are determined by the
cross-sectional area A, which can be conveniently de-
scribed by a dimensionless parameter c¢ relating the energy
barrier for phase slips to thermal energies near 7,

AF(T =0) _ 82 H.(0)? £(0)

kTc 3 8w kT,
Using standard BCS and Ginzburg-Landau relations for
dirty superconductors [15], this expression can be rewrit-

ten in terms of parameters that are more experimentally
accessible,

A @

Cc =

¢ =083t L _ g3 R (4a)
"~ £(0) Ry TR0
where we have introduced the notation R to refer to
the normal resistance of the wire in a length £(0). For
the samples reported here, taking £(0) = 5 nm [11], (4a)
yields values of ¢ ranging from 8 to 39.

Using these values of ¢, we calculate the resistance of
the wires arising from both thermal and quantum phase
slips, as given in Eq. (3), with two adjustable parameters,
a and B [16]. (The calculated curves are also multiplied
by an overall factor 1.2 so that they can be compared
more easily with the data.) As shown by the dotted lines
in Fig. 2, these simulations reproduce the data quite well
when we take a = 1.3 and B = 7.2. The agreement is
rather remarkable since there are only two free parameters
for the entire family of curves.

The above model is based on a heuristic formulation.
However, in a recently developed microscopic theory by
Golubev and Zaikin [8], the MQT term follows an expo-
nential term identical to that in (2) (apart from factors of
order unity), but the prefactor has an additional factor of
a+/c/0.83, which is about 7 on average for our samples.
This different prefactor given by the microscopic theory
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provides a good explanation for the somewhat large value
of B obtained from our fits. Moreover, by introducing
small random fluctuations in the width (i.e., the values of
c) along a single wire, we are able to reproduce the occa-
sional crossing of the data curves as seen in samples 6 and
7 of Fig. 2.

We note that Eq. (3) cannot reproduce the data of sample
5 of Fig. 2 (and one other sample not shown here) ade-
quately for any choice of @ and B. This may be attributed
to a number of mechanisms, such as depressed 7, [17],
unusually thin films, or inadvertent contamination. Never-
theless, since only 2 of the 20 samples show such anoma-
lous behaviors, and since a, the factor of order unity in the
dominant exponential term, is found through simulations
to be within 30% of unity, the agreement between the ma-
jority of the data and the model (3) is still quite remarkable.

This simple model considers only individual noninter-
acting quantum phase slips. This is supported by the theo-
retical work of Golubev and Zaikin [8], which argues that
interactions should not be important except in considerably
longer wires than those studied here.

To address the question of whether there is a well-
defined cutoff diameter, below which superconductivity is
excluded even at T = 0, we plot the normalized sample
resistances at our lowest temperatures (~1.5 K) as a func-
tion of L/Ry in Fig. 3. (The parameter L/Ry, rather than
cross-sectional area A is used because L and Ry are known
with much greater accuracy than the widths and profiles of
the wires, which would be needed to determine A geo-
metrically.) The linear plot in Fig. 3a suggests that there
is a transition from metallic to superconducting states at
L/Ry ~ 0.014 nm/Q, corresponding to a sample width
of about 10 nm. This is numerically consistent with theo-
retical predictions of a critical width ~10 nm [7]. How-
ever, the significance of this agreement is unclear in view
of Fig. 3b, which plots the same data points on a semilog
scale and demonstrates that there is no feature at any par-
ticular value of L/Ry. In fact, Fig. 3b can be readily
understood in terms of MQT of phase slips at low tem-
peratures. The plot shows that resistances at 7 /7T, ~ 0.3
decrease exponentially with L/Ry. This is what we would
expect from Eq. (2) since AF « A o L/Ry, and the con-
tribution (1) from thermally activated phase slips is negli-
gible at such low temperature. Quantitatively, if we neglect
the weak effect of the prefactor and consider only the ex-
ponential dependence in (2), the slope of the semilog plot
is calculated to be

dIn(Rmot/RN)

T Ry
3L/RY) =a X 0.83 8 £(0) 0.54 k) /nm,
%)

where we have used a = 1.3 obtained from the simulations.
Fitting the data points in Fig. 3b with an exponential func-
tion, we obtain a slope of 0.39 k{)/nm, in reasonable
agreement with the expected value (5). Therefore our
simple model of quantum phase slips works remarkably
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FIG. 3. Resistance at 1.5 K normalized to normal state resis-

tance as a function of L/Ry. (a) Linear plot. The dotted line
is a guide to the eye. (b) Semilog plot with an exponential fit.
Slope of the fitted line is 0.39 kQ /nm, compared with 0.54 k()
in (5).

well in explaining both the exponential form and numeri-
cal coefficient of the dependence of the data on the sample
Cross section.

Finally, we would like to comment on the role of dis-
sipation. Dissipation from a shunt resistor below R, is
predicted to suppress MQT of phase slips in Josephson
junctions [18,19]. In our nanowires, presumably the pri-
mary source of dissipation is the loss from high-frequency
electromagnetic fields generated in the nanowire by the
phase slips. At the low temperature limit, from Egs. (2)
and (4a), we see that

Ruor < exp[—(bR,/Re(r))], (6)

where b = 0.43. This result is reminiscent of the Schmid
result for Josephson junctions [18], if one takes the damp-
ing resistance to be the normal resistance of a few coher-
ence lengths of the nanowire surrounding the phase slips.
This conclusion is consistent with the work of Golubev
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and Zaikin [8], who point out that dissipation, while physi-
cally important, does not appear in the final formulas for
phase slip rates apart from numerical factors of order unity.
An additional source of dissipation could stem from the
capacitive coupling at high frequencies between the nano-
wire and the underlying nanotubes. This would depend on
the fraction of the nanotubes in the ropes that were metal-
lic, and hence dissipative. However, we would like to stress
that Eq. (3) fits the data remarkably well, without invoking
any role for external dissipation.
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