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Projected Wave Functions and High Temperature Superconductivity
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We study the Hubbard model with parameters relevant to cuprates using variational Monte Carlo for
projected d-wave states. For doping 0 , x & 0.35 we obtain a superconductor whose order parameter
F�x� tracks the observed nonmonotonic Tc�x�. The variational parameter Dvar�x� scales with the �p , 0�
“hump” and T � seen in photoemission. Projection leads to incoherence in the spectral function and from
the singular behavior of its moments we obtain the nodal quasiparticle weight Z � x though the Fermi
velocity remains finite as x ! 0. The Drude weight Dlow and superfluid density are consistent with
experiment and Dlow � Z.
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Strong correlations are essential to understand d-wave
high temperature superconductivity in doped Mott insula-
tors [1]. The no-double occupancy constraint arising from
strong correlations has been treated within two comple-
mentary approaches. Within the gauge theory approach
[2], which is valid at all temperatures, the constraint ne-
cessitates the inclusion of strong gauge fluctuations. Al-
ternatively, the constraint can be implemented exactly at
T � 0 using the variational Monte Carlo (VMC) method.
Previous variational studies [3–6] have focused primarily
on the energetics of competing states.

In this Letter, we revisit projected wave functions of
the form proposed by Anderson in 1987 [1]. Our main
goal is to understand the following: How do strong cor-
relations affect the properties of the d-wave supercon-
ducting (SC) state? To what extent can one understand
high Tc experiments in terms of a variational approach to
the 2D Hubbard model? We thus focus on the uniform
d-wave SC state, known to be energetically favorable over
a large doping range [3–6], leaving the issues of compe-
tition with antiferromagnetism and stripes at small x for
future studies.

For the SC state we compute physically interesting cor-
relations using VMC and show that projection leads to
loss of coherence. We obtain information about low en-
ergy excitations from the singular behavior of moments of
the occupied spectral function. Remarkably, our results
for various observables are in semiquantitative agreement
with experiments on the cuprates. We also make qualita-
tive predictions for the doping (x) dependence of correla-
tion functions in projected states (for x ø 1) from general
arguments which depend only on the projection.

We use the Hubbard Hamiltonian H � K 1Hint.
The kinetic energy K �

P
k,s e�k�cy

kscks with e�k� �
22t�coskx 1 cosky� 1 4t0 coskx cosky the dispersion on
a square lattice with nearest (t) and next-nearest (t0) hop-
ping. The on-site repulsion is Hint � U

P
r n"�r�n#�r�

with ns�r� � cy
s�r�cs �r�. We work in the strongly cor-

related regime where J � 4t2�U, t0 & t ø U near half
filling: n � 1 2 x with the hole doping x ø 1. We

choose t0 � t�4, t � 300 meV and U � 12t, so that J �
100 meV, consistent with neutron data on cuprates.

We describe the ground state by the wave function

jC0� � exp�iS�P jCBCS� . (1)

Here jCBCS� � �
P

k w�k�cy
k"c

y
2k#�N�2j0� is the N-electron

d-wave BCS wave function with w�k� � yk�uk �
Dk��jk 1

p
j2k 1 D

2
k �. The two variational parameters

mvar and Dvar determine w�k� through jk � e�k� 2 mvar
and Dk � Dvar�coskx 2 cosky��2. The projector P �Q

r ���1 2 n"�r�n#�r���� in Eq. (1) eliminates all configura-
tions with double occupancy, as appropriate for U ! `.

The unitary transformation exp�iS� includes double
occupancy perturbatively in t�U [7]. The transformation
exp�2iS�H exp�iS� is well known to lead to the tJ
Hamiltonian [7]. However, we transform all opera-
tors [8], and not just H . Using �C0jQjC0� �
�CBCSjP Q̃P jCBCS� with Q̃ � exp�2iS�Q exp�iS�, it
follows that incorporating exp�iS� in the wave function
(1) is equivalent to transforming Q ! Q̃ and working
with fully projected states.

Using standard VMC techniques [9] we compute equal-
time correlators in the state jC0�. The two variational
parameters are determined by minimizing �C0jH jC0��
�C0 jC0� at each x. The doping dependence of the re-
sulting Dvar�x� is shown in Fig. 1(a). Varying input pa-
rameters in H we find that the scale for Dvar is mainly
determined by J � 4t2�U. We show below that Dvar is
not proportional to the SC order parameter, in contrast
to BCS theory, and also argue that it is not equal to the
spectral gap. On the other hand, we find that the optimal
mvar�x� 	 m0�x�, the chemical potential of noninteracting
electrons described by K . However, mvar is quite different
[11] from the chemical potential m � ≠�H ��≠N , where
�· · ·� denotes the expectation value in the optimal, normal-
ized ground state.

Phase diagram.—We now show that the wave function
(1) is able to describe three phases: a resonating valence
bond (RVB) insulator, a d-wave SC, and a Fermi liquid
metal. To establish the T � 0 phase diagram we first
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FIG. 1. (a) The variational parameter Dvar (filled squares) and
the �p, 0� hump scale (open triangles) in ARPES [10] versus
doping. (b) Doping dependence of the d-wave SC order parame-
ter F. Solid lines in (a) and (b) are guides to the eye. (c) The
coherence length jsc $ max�jpair, 1�

p
x �.

study off-diagonal long range order using Fa,b�r 2 r0� �

�cy
" �r�cy

# �r 1 â�c#�r0�c"�r0 1 b̂��, where â, b̂ � x̂, ŷ.
We find that Fa,b ! 6F2 for large jr 2 r0j, with 1�2�
sign obtained for â k ��� to b̂, indicating d-wave SC.
As seen from Fig. 1(b) the order parameter F�x� is not
proportional to Dvar�x�, and is nonmonotonic. F vanishes
linearly in x as x ! 0 as first noted in Ref. [4], even
though Dvar fi 0. We argue [12] that F � x is a general
property of projected SC wave functions. The local fixed
number constraint imposed by P at x � 0 leads to large
quantum phase fluctuations that destroy SC order. The
non-SC state at x � 0 is an insulator with a vanishing
Drude weight, as shown below. The system is a SC in
the doping range 0 , x , xc 
 0.35 with F fi 0. For
x . xc, F � 0 and the wave function C0 for Dvar � 0
describes a normal Fermi liquid. In the remainder of this
paper we will study 0 , x # xc.

Coherence lengths.—We must carefully distinguish be-
tween various “coherence lengths,” which are the same in
BCS theory, but are very different in strongly correlated
SC’s. The internal pair wave function w�k� defines a pair
size jpair � ȳ

0
F�Dvar, where ȳ0F is the bare average Fermi

velocity. Projection does not affect the pair size much, and
jpair remains finite at x � 0, where it defines the range of
singlet bonds in the RVB insulator [1].

A second important length scale is the interhole spacing
1�
p

x. At shorter distances there are no holes and the
system effectively looks like the x � 0 insulator. Thus
the superconducting coherence length jsc must necessarily
satisfy jsc $ max�jpair, 1�

p
x �. This bound implies that

jsc must diverge both in the insulating limit x ! 0 (see
also Refs. [2]) and the metallic limit x ! x2c , but is small
at optimality; see Fig. 1(c). This nonmonotonic behavior
of jsc�x� should be checked experimentally.

Momentum distribution.—From gray-scale plots like
Fig. 2 we see considerable structure in the momentum dis-
tribution n�k� over the entire range 0 # x # xc. One
cannot define a Fermi surface (FS) since the system is a
SC (or an insulator). Nevertheless, for all x, the k-space
loci (i) on which n�k� � 1�2 and (ii) on which j=kn�k�j
is maximum, are both quite similar to the corresponding
noninteracting FS’s. For t0 � t�4, the FS is holelike for
x & 0.22, and electronlike for overdoping [13].

We next exploit the fact that moments of dynamical
correlations can be expressed as equal-time correlators,
calculable in our formalism. Specifically, we look at
M��k� �

R`
2` dvv�f�v�A�k,v�, where A�k,v� is the

one-particle spectral function and, at T � 0, f�v� �
Q�2v�. We calculate M0�k� � n�k� and the first
moment [14] M1�k� � �cy

ks�H 2 mN , cks�� to obtain
important information about the spectral function.

Nodal quasiparticles.—Figure 2(c) shows that along
�0, 0� to �p,p� n�k� has a jump discontinuity. This im-
plies the existence of gapless quasiparticles (QPs) observed
by angle resolved photoemission spectroscopy (ARPES)
[15]. The spectral function along the diagonal thus has
the low energy form: A�k,v� � Zd�v 2 j̃k� 1 Ainc,
where j̃k � yF�k 2 kF� is the QP dispersion and Ainc the
smooth incoherent part. We estimate the nodal kF�x� from
the location of the discontinuity and the QP weight Z from
its magnitude. While kF�x� has weak doping dependence,
Z�x� is shown in Fig. 2(d), with Z � x as the insulator is
approached [16].

Projection leads to a suppression of Z from unity with
the incoherent weight �1 2 Z� spread out to high energies.
We infer large incoherent linewidths as follows. (a) At

x=0.05

x=0.18

α
β

FIG. 2. (a) and (b) Gray-scale plots of n�k� (black � 1,
white � 0) centered at k � �0, 0� for x � 0.05 and x � 0.18,
respectively, on a 19 3 19 1 1 lattice, showing very little
doping dependence of the large “Fermi surface.” (c) n�k�
plotted along the diagonal direction [indicated as a in (b)],
showing the jump at kF which implies a gapless nodal
quasiparticle of weight Z. (d) Nodal quasiparticle weight
Z�x�, compared with the simple slave boson mean field result
Zsb�x� � x.
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the “band bottom” n���k � �0, 0���� 
 0.85 (for x � 0.18)
implying that 15% of the spectral weight must have spilled
over to v . 0. (b) Even at kF , the first moment M1
lies significantly below v � 0 (defined by the chemical
potential m � ≠�H ��≠N ); see Fig. 3(a).

The moments are dominated by the high energy inco-
herent part of A�k,v�, but their singular behavior is de-
termined by the gapless coherent QPs. Specifically, along
the zone diagonal M1�k� � Zj̃kQ�2j̃k� 1 smooth part.
Thus its slope dM1�k��dk has a discontinuity of ZyF

at kF , as seen in Fig. 3(a), and may be used to estimate
[17] the nodal Fermi velocity yF . As seen from Fig. 3(b),
yF�x� is reduced from its bare value y0F and is weakly dop-
ing dependent, consistent with the ARPES estimate [15] of
yF 	 1.5 eV Å in Bi2Sr2CaCu2O81d (BSCCO).

As x ! 0, Z � �1 2 ≠S0�≠v�21 � x, while yF�x��
y
0
F � Z�1 1 �y0F �21≠S0�≠k� is weakly x dependent. This

implies a 1�x divergence in the k dependence of the self-
energy S on the zone diagonal, which could be tested
by ARPES.

Within simple slave boson mean field theory (MFT) [1],
we find Zsb � x in Fig. 2(d) and ysbF �x� [11] shown in
Fig. 3(b), both systematically smaller than the correspond-
ing VMC results. These differences arise from the fact that
slave boson MFT implements the constraint in an approxi-
mate manner while the VMC does so exactly.

Moments along �p, 0� ! �p,p�.—The moments n�k�
and M1�k� near k � �p, 0� are not sufficient to estimate
the SC gap; however, they give insight into the nature of
the spectral function. As seen from Fig. 4(a) n�k� is much
broader than that for the unprojected jCBCS�. For k’s
near �p,p�, which correspond to high energy, unoccupied
(v . 0) states in jCBCS� we see a significant buildup of
spectral weight transferred from v , 0. Correspondingly,
we see loss of spectral weight near �p, 0�. We thus infer

kF

FIG. 3. (a) The moment M1�k� along the zone diagonal, with
smooth fits for k , kF and k . kF , showing a discontinuity of
ZyF in its slope at kF . (b) Doping dependence of the nodal
quasiparticle velocity obtained from M1�k�. Error bars come
from fits to M1�k� and errors in Z. Also shown are the bare
nodal velocity y0

F , the slave boson mean field ysb
F �x� (dashed

line), and the ARPES estimate y
�expt�
F [15].

large linewidths at all k’s, also seen from the large jM1�k�j
[in Fig. 4(b)] relative to the BCS result.

The transfer of weight over large energies inferred above
suggests that projection pushes spectral weight to jvj ,

Dvar, the gap in unprojected BCS theory. We thus expect
that the true spectral gap Egap , Dvar and that the coher-
ent QP near �p, 0� must then reside at Egap in order to be
stable against decay into incoherent excitations. It is then
plausible that Dvar, the large gap before projection, is re-
lated to an incoherent feature in A�k,v� near �p, 0� after
projection [18]. Indeed, comparing Dvar with the �p, 0�
hump feature seen in ARPES [10], we find good agree-
ment in the magnitude as well as doping dependence; see
Fig. 1(a).

Optical spectral weight.—The optical conductivity sum
rule states that

R`
0 dvRes�v� � p

P
k m21�k�n�k� �

pDtot�2 where m21�k� � ≠2e�k��≠kx≠kx is the non-
interacting mass tensor (we set h̄ � c � e � 1). The
total optical spectral weight Dtot�x� is plotted in Fig. 5(a)
and seen to be nonzero even at x � 0, since the infinite
cutoff in the integral above includes contributions from
the “upper Hubbard band.”

A physically more interesting quantity is the low fre-
quency optical weight, or Drude weight, Dlow where the
upper cutoff extends above the scale of t and J, but is
much smaller than U. This is conveniently defined [8,11]
by the response to an external vector potential: Dlow �
≠2�HA�A�≠A2. Here the subscript on H denotes that A
enters the kinetic energy via a Peierls minimal coupling,
and that on the expectation value denotes the correspond-
ing modification of exp�iS� in Eq. (1). The Drude weight
Dlow�x�, plotted in Fig. 5(a), vanishes linearly as x ! 0,
which can be argued to be a general property of projected
states [11]. This also proves, following Ref. [19], that
jC0� describes an insulator at x � 0. Both the magnitude
and doping dependence of Dlow�x� are consistent with op-
tical data on the cuprates [20].

Motivated by our results on the nodal Z�x� and Dlow�x�,
we make a parametric plot of these two quantities in

FIG. 4. (a) n�k� plotted along the �p , 0�-�p ,p� direction [in-
dicated as b in Fig. 2(b)] and compared with the BCS result.
(b) The moment M1�k� plotted along the �p , 0�-�p ,p� direction
compared with the BCS values.
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FIG. 5. (a) Doping dependence of the total (Dtot) and low
energy (Dlow) optical spectral weights. (b) The optical spectral
weight Dlow versus the nodal quasiparticle weight Z.

Fig. 5(b) and find that Dlow � Z over the entire doping
range, a prediction which can be checked by comparing
optics and ARPES [21] on the cuprates.

Superfluid density.—The Kubo formula for the super-
fluid stiffness Ds can be written as Ds � Dlow 2 L

T ,
where Dlow is the diamagnetic response, and LT is the
transverse current-current correlator. Using the spectral
representation for LT it is easy to see that [22] LT $ 0
implying Ds # Dlow. Two conclusions follow. First,
Ds ! 0 as x ! 0, consistent with experiments [23]. Sec-
ond, we obtain a lower bound on the penetration depth
lL defined by l22

L � 4pe2Ds�h̄2c2dc. Using the cal-
culated Dlow 	 90 meV at optimality and a mean inter-
layer spacing dc � 7.5 Å (appropriate to BSCCO), we
find lL * 1350 Å, consistent with experiment [24].

Conclusions.—At T � 0, our variational wave func-
tion describes the evolution of the system from an un-
doped RVB insulator to a d-wave SC to a Fermi liquid
with increasing x. The SC order parameter F�x� is non-
monotonic, maximum at optimal doping x 
 0.2, and
reminiscent of the experimental Tc�x�. As x ! 0 Ds van-
ishes, while the spectral gap, expected to scale with Dvar,
remains finite. Thus the underdoped state, with strong
pairing and weak phase coherence, should lead to pseudo-
gap behavior in the temperature range between Tc (which
scales like F) and T� (which scales like Dvar).
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