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Kinetics of Faceting Driven by Attractive Step-Step Interactions on Vicinal Si(113)
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We have studied the far-from-equilibrium kinetics of faceting caused by short-ranged attractive step-
step interactions on vicinal Si(113), using scanning tunneling microscopy. We show that a network of
step bunches coarsens via both zipping up of the neighboring step bunches and irreversible binding events
which alter the local topological configuration. A step-network model which incorporates the irreversible
step-bunch-binding events yields quantitative understanding of the experimental results.
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On crystal surfaces with arbitrary orientation, breakups
of surfaces into regions of two or more different
orientations, or faceting, occur due to the orientational
dependence of the surface free energy. Though the ther-
modynamic arguments for faceting have long been well
established [1], the kinetics of faceting is a long-standing
problem for surface physics. Mullins [2] pioneered
the study of the kinetics of facet growth, developing a
one-dimensional mathematical formulation in terms of a
continuum model. However, more detailed and quantita-
tive understanding of faceting kinetics requires exploration
of the step dynamics, since the surface mass transport
depends on the nature of steps below the roughening
temperature. Vicinal Si(113) surfaces are appropriate
for investigating such step dynamics during faceting.
Song and Mochrie [3] have first observed that faceting
occurs on vicinal Si(113) surfaces by x-ray scattering,
and then theoretical works [4–6] have shown that the
observed orientational phase diagram for equilibrium
surface morphology is characteristic of vicinal sur-
faces with short-range attractive step-step interactions and
long-range repulsive step-step interactions. Recently, simi-
lar morphological features involving attractive step-step
interactions have been found on a TaC surface [7]. As for
the kinetics of the faceting on vicinal Si(113) surfaces, it
has been observed that the characteristic length of hill and
valley structure increases as t1�6 [8–10], different from
the facet growth as t1�4 under surface diffusion, which is
expected from the continuum model [2].

In this Letter, we study the far-from-equilibrium kinet-
ics of faceting due to attractive step-step interactions, us-
ing a variable temperature scanning tunneling microscope
(STM). Measurements were performed after a tempera-
ture drop to far below the transition temperature, estab-
lishing far-from-equilibrium conditions for the subsequent
kinetic processes. We analyze the observed time evolu-
tion of surface morphology in terms of the continuum step
model. Under these conditions, we find that facet growth
results from coarsening of a network of step bunches via
zipping up of neighboring step bunches and irreversible
step-binding events which alter the local topological con-
figuration. We extend the continuum step model to study
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the two-dimensional pattern evolution of a step network,
and demonstrate that the step-network model reproduces
not only the time scaling behavior but also real time evo-
lution of surface morphology.

We have studied the Si(113) surface misoriented by 1.7±

toward a low symmetry azimuth which is rotated by 33± to
�3̄3̄2� from �1̄10�. The experiments were performed in an
ultrahigh vacuum chamber with a base pressure of 3.0 3

1028 Pa, equipped with a variable temperature STM. We
observed morphological changes in the course of annealing
at 600 ±C, which is lower than the faceting temperature
of �720 ±C for this surface from an initially uniformly
stepped surface formed at 1000 ±C.

Figure 1 shows wide area STM images of the surface
annealed at 600 ±C for various annealing periods and
quenched to room temperature. In these STM images, we
observe networks of step bunches and coarsening with
increasing annealing time. In Fig. 1(d), we show the
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FIG. 1. 1300 nm 3 1300 nm STM images of Si(113) sur-
faces taken at room temperature after annealing at 600 ±C for
(a) 1 min, (b) 8 min, and (c) 32 min. (d) Time dependence of
the average terrace width.
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measured time dependence of the average terrace width L,
showing a power law dependence, i.e., L�t� � tf. From
the data, the exponent f is determined to be 0.18 6 0.02,
in agreement with t1�6 previously observed by the x-ray
scattering measurement of Song et al. [8,9].

To see how a network of step bunches coarsens, we have
monitored the evolution of a step configuration while an-
nealing the sample at 600 ±C. An example of a sequence
of STM images is shown in Fig. 2. After annealing the
surface for 530 s, step bunches have already grown and
formed a network. We could not directly observe the
process of formation of such a random network of step
bunches from regularly arranged single steps in the very
early stage, because of the sample drifting following the
stepwise temperature change. At such a low temperature,
a step bunch neither fluctuates largely nor debunches by
thermal excitation. Distinct changes in the step configu-
ration are recognized only in the vicinity of points where
two step bunches merge. One case is that the merger points
propagate along the step direction just like zipping up (one
of them is indicated by a large arrow in Fig. 2). Another
distinctive feature is that the neighboring step bunches are
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FIG. 2. The time evolution of surface morphology during
faceting at 600 ±C. The images correspond to (a) 530 s,
(b) 610 s, (c) 650 s, (d) 690 s, (e) 930 s, and (f ) 1085 s, after
starting to anneal at 600 ±C.
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mediated to approach with each other by a crossing step
trapped between them, as shown by the small arrow in
Fig. 2. In Fig. 3, we show the measured distance l be-
tween the step bunches which are connected by a cross-
ing step (see inset of Fig. 3) as a function of time. When
the distance between the step bunches decreases down
to �30 nm, the two step bunches suddenly contact each
other, and the topological configuration of the network
changes. The mechanism of this behavior has not been in-
vestigated in detail, because such rare events are difficult
to capture in high resolution (small area, small time step)
imaging. However, it does appear that the onset of this
topological change is associated with thermal fluctuations
of the step bunches since this kind of change in step-bunch
topology was not observed at lower temperatures.

The basic theory of the motion of continuous steps was
well established for various physical situations [11–13].
Previously, we have quantitatively explained the local
zipping move, applying the theory to a ramified step
configuration by allowing for the effect of the short-range
attractive step-step interaction in the boundary condition
[14]. In order to treat the coarsening of network structures
of step bunches, the surface morphology is represented
by a network of strings where each string is connected
with two other strings at the both ends. Assuming attach-
ment/detachment limited kinetics here, we describe the
time evolution of the configuration of a step bunch as

≠xi�y�
≠t

�
Gnb̃n

kT

≠2xi

≠y2 , (1)

where xi�y� is the position of the ith step bunch at point
y along the step direction, n is the size of the step bunch,
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FIG. 3. The time dependence of the distance l between the
step bunches which are mediated to approach with each other
by the crossing step. The inset shows an example of crossing-
step-mediated approaching of step bunches.
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and Gn and b̃n are the mobility and the stiffness of the
step bunch, respectively. In this model, the shape of a step
bunch evolves so that the local curvature may decrease.
Since the attractive step-step interaction is short ranged, we
are able to incorporate its effect in the boundary condition
of Eq. (1). Here we assume that a step bunch always
contacts with the neighboring step bunches at an angle
which minimizes the local surface free energy. The contact
angle u, which is determined by a competition between the
energy gained by the attractive interaction and the energy
lost by increasing the length of the step bunch, is given by

cosu �
nh

b̃n tanf

µ
gbunch

cosf
2 g113

∂
, (2)

where g113 and gbunch are the free energy of (113) facets
and step bunches per unit area, respectively, f is the
angle between the (113) facet and the step bunch, and h
is the height of the single steps. Both the mobility and the
stiffness of the step bunch appearing in Eqs. (1) and (2)
in general depend on the bunch size n. Here we assume
that b̃n � nb̃1, and that Gn � G1�n; therefore the factor
of n cancels in Eqs. (1) and (2) and the behavior of each
step bunch is independent of its bunch size. Previously,
Song and co-workers assumed these relationships [9], and
we confirmed the linear dependence of the step stiffness
on bunch size using STM [15]. Yamamoto [16] has pre-
dicted these dependences of the stiffness and the mobility
for a group of steps on rough surfaces in the harmonically
interacting step picture [17].

As shown in Fig. 2, the approach of step bunches
through zipping leads to a change in topological configu-
ration of the step network when the bunches become
sufficiently close. In particular, the reconnection in the
network configuration from an H-shaped connection with
a crossing step to an X-shaped connection, as shown in the
inset of Fig. 3, plays an important role in the coarsening of
the network, since it triggers another zipping move. Our
equations of step motion, which describe the curvature
driven step motion, reproduce the initial slow decrease
in distance l shown in Fig. 3. However, the final rapid
decrease leading to the contact of step bunches is not
reproduced, because they contain no term representing
a strong bunch-bunch interaction. Instead, by the use of
Eqs. (1) and (2), the H-shaped configuration eventually
ceases to change as the distance l decreases to a certain
value, since the step curvatures become very small during
the relaxation. To incorporate the irreversible binding that
leads to step-bunch merging, we introduce a characteristic
length lc as an empirical parameter. When the distance
l between the step bunches in an H-shaped configura-
tion decreases down to lc, we mechanically change the
H-shaped configuration to an X-shaped one as experimen-
tally observed. To examine this model, we propagate the
configuration extracted from the STM image in Fig. 2(a)
forward in time, numerically integrating Eq. (1) while
allowing the alteration of the topological configuration
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of the network. In the numerical integration, we use a
rescaled time: t � t�G1b̃1�kT�, thus only u and lc are
parameters for the simulation. Here we set parameters
estimated from the experimental results: u � 30± and
lc � 35 nm. Figure 4 shows the result of the numerical
simulation. One can see that the simulation qualitatively
reproduces the observed time evolution of the step con-
figuration shown in Fig. 2. From comparison between
the time scales in the simulation and the experiment, we
estimate that G1b̃1�kT � 90 6 20 nm2�s.

To quantify the scaling properties in our kinetic
model, we performed larger scale simulations, employing
the experimental step configuration extracted from the
1300 nm 3 1300 nm STM images of a surface quenched
from 1000 ±C to room temperature as initial configura-
tions. On each surface, a fine random network of step
bunches (mainly, single, double, and triple steps), which
is formed by random coalescence of thermally fluctuating
steps in the earlier stage of faceting, is frozen. The
resulting calculated time dependence of average terrace
width is shown in Fig. 5. Here we set lc and u to 35 nm
and 30±, respectively, and the result is averaged over nine
individual calculations with different initial configurations.
The result is consistent with the power law dependence on
time, though the range of the data is too narrow because
of the simulation in a finite system size. The obtained
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FIG. 4. Sequence of configurations generated in the simu-
lation. (a) starting configuration created from the experi-
mental data in Fig. 2(a). The configurations correspond to
(b) t � 7000, (c) t � 11 000, (d) t � 14 000, (e) t � 36 000,
and (f) t � 50 000, where t is the rescaled time, t�G1b̃1�kT �.
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FIG. 5. The time dependence of the average terrace width ob-
tained by the simulation for lc � 35 nm and u � 30±.

exponent is 0.18 6 0.02, which is consistent with the time
dependence as t1�6. A comparison in amplitude of the
power law fit between the simulation and the experiment
[Fig. 1(d)] yields G1b̃1�kT � 100 6 20 nm2�s, which is
consistent with the value estimated from the simulation
in Fig. 4. Though the fate of the surface morphology
depends on the parameter lc, we confirmed that the
exponent is independent of lc in the range of 25–50 nm.
For the exponent of 1�6, Mochrie and co-workers [9] have
also proposed a model in which step bunching occurs via
collisions of thermally fluctuating step bunches. Though
their model is appropriate for higher temperatures at
which thermal fluctuations are crucial, our model consid-
ers faceting at lower temperatures where binding of step
bunches following a collision is irreversible.

In summary, we have studied the step dynamics in
faceting caused by the short-range attractive step-step
interactions in a regime far from equilibrium. In the
late stage of the faceting, the two-dimensional network
of step bunches coarsens via zipping of the neighboring
step bunches and irreversible binding events that alter the
network topology. For coarsening of the step network,
we have constructed a phenomenological model based on
the continuum step model, incorporating the irreversible
binding events as a distinct change in junction topology
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occurring when bunch separations become smaller than
a critical distance. The numerical calculation reproduces
the qualitative two-dimensional pattern evolution and the
quantitative time scaling behavior. The essential physics
of the complex two-dimensional evolution of morphology
is captured by only three important parameters: the
product of the step stiffness and the step mobility, the
step contact angle, and a critical distance for irreversible
binding.
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