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We study fluctuation-induced interaction in confined fluids above the isotropic-lamellar transition.
At an ideally continuous transition, the disjoining pressure has the asymptotic form P�d ! `� �
2CkBTq2

0�d, where d is the interwall distance, q0 is the wave number of the scattering peak,
and C � 1�4p in the strong anchoring limit. The long-rangedness is enhanced due to continuous
distribution of soft modes in the q space. An unconventionally strong Casimir force with a range of
several lamella thicknesses is realistic above the transition. We also find an oscillatory force profile
near a surface-induced transition.
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Fluids in confined geometries show a variety of phe-
nomena that are not observed in bulk. Among them,
thermal-fluctuation–induced interactions between bound-
ary walls or objects immersed in the fluid have attracted
much attention. They are called the Casimir forces by
analogy with the quantum original [1]. The forces are
long-ranged in systems with soft modes, such as critical
simple fluids [2,3] and liquid crystals [4,5], with the decay
law and amplitude modulated by various surface effects
[3,6,7]. Recent evidence [8–10] supports the view that the
interaction is ubiquitous in correlated fluids [11].

In this Letter, we address the effect in structured
fluids above the isotropic-lamellar (I-L) transition. The
model system we consider has two characteristic lengths,
which describe decay and oscillation of the correlation
function. Physical realizations of the model include block
copolymers in the disordered phase and bicontinuous
microemulsions. Films of block copolymers have consti-
tuted the subject of numerous papers [12–16]. Most of
them focus on the lamellar phase, while a few theoretical
works treat the system above the I-L transition [15,16].
The latter works discuss the effect of a surface field,
which induces a mean-field interaction between boundary
walls. In comparison to the case of copolymers, much
less is known about confined fluids containing short-chain
surfactants [17–19]. A mean-field study with a standard
Ginzburg-Landau model of microemulsions found a
surface-induced I-L transition that preempts the bulk
transition [17].

The bulk property of the system we assume is described
by the Hamiltonian

Hb �
e

2

Z dq
�2p�3 ��q2 2 q2

0�2 1 p4
0 � jfqj

2, (1)

where e is a constant, f is the order parameter, and p0

and q0 are characteristic wave numbers that generally de-
pend on the temperature. This and similar types of Hamil-
tonians, with or without additional nonlinear terms, have
been applied to various kinds of complex fluids [20–23].
For symmetric AB-block copolymer melts, for instance, f

represents the excess of A-monomer’s (say) volume frac-
tion with respect to its spatial average, and the parameters
0031-9007�01�87(21)�216101(4)$15.00
are given by e � 0.0327kBTRg�N1�2, q0 � 1.95�Rg, and
p0 � 1.43��xc 2 x�N �1�4�Rg. Here, Rg is the chain’s
gyration radius, N is the polymerization index, x is the
Flory interaction parameter, and xc � 10.5�N locates the
mean-field I-L transition [20]. To be general, we shall use
the ratio p0�q0 as the measure of distance from the transi-
tion temperature.

We consider a confined film of thickness d and of macro-
scopic area. The total Hamiltonian is the sum of bulk
and surface contributions, H � Hb 1 Hs. We write
the bulk Hamiltonian (1) in the real space as

Hb �
e

2

Z
0,z,d

dr ��=2f�2 2 2q2
0�=f�2

1 �p4
0 1 q4

0�f2� . (2)

In this form, the Hamiltonian is equivalent to the Teubner-
Strey model of microemulsions [21] in the temperature
region between the bicontinuous-lamellar transition and
the Lifshitz point. For chemically neutral and identical
walls, the surface part of the Hamiltonian can be expanded
up to the second order in f and =f as [24]

Hs �
Z

dr �vsf
2 1 gs�=f�2� �d�z� 1 d�z 2 d�� .

(3)

The free energy of an elastic medium in a finite geometry
can be computed by several different techniques for regu-
larizing a divergent sum [5–7,25]. The analysis reduces to
a 1D problem for the in-plane Fourier modes fq�

�z� �R
dr� exp�2iq�r��f�r�, where r� � �x,y� and q� �

�qx , qy�. The partition function for each in-plane mode is
given by

Zq�
�

Z
du

Z
dv

Z
u,v

Dfq�

3 e2�Hb ,q� 1�vs1gsq
2
��u21gsv2��kBT . (4)

Here, Hb,q�
is the Fourier component of Hb andR

u,v Dfq�
means that the functional integral should be

taken over the paths that satisfy

�fq�
�0�, fq�

�d�� � u (5)
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and

�f0
q�

�0�, f0
q�

�d�� � v , (6)

where 0 � ≠�≠z. The path integral for a quadratic Hamil-
tonian that contains a squared second derivative has been
calculated by Kleinert [26]. Following his work, we de-
compose each fluctuation path that satisfies conditions (5)
and (6) into two parts as fq�

� fm,q�
1 dfq�

, where
fm,q�

� fm,q�
�z; u, v� is defined as the path that mini-

mizes Hb,q�
under the same boundary conditions. Then

the Hamiltonian is decomposed as

Hb,q�
� Iq�

1 Jq�
, (7)

Iq�
�

e

2

Z d

0
dz �jdf00

q�
j2 1 2�q2

� 2 q2
0� jdf0

q�
j2

1 ��q2
� 2 q2

0�2 1 p4
0 � jdfq�

j2� , (8)

Jq�
�

e

2
�f0

m,q�
f00

m,2q�
2 fm,q�

f000
m,2q�

1 2�q2
� 2 q2

0�fm,q�
f0

m,2q�
�d
0 . (9)

The latter part can be expressed in terms of the bound-
ary values as Jq�

� a ? M ? a, where a � �u1, u2, y1, y2�
and M � M�q�, d� is a 4 3 4 matrix whose calculation is
straightforward. Accordingly, the partition function is fac-
torized into “bulk” and “surface” parts as

Zq�
� Zb,q�

? Zs,q�
, (10)

Zb,q�
�

Z
0,0

Dd fq�
e2Iq� �kBT , (11)

Zs,q�
�

∑
det

M 1 �vs 1 gsq
2
��Eu 1 gsEv

pkBT

∏21�2

, (12)

Eu � diag�1, 1, 0, 0� , (13)

Ev � diag�0, 0, 1, 1� . (14)

The bulk factor can be computed using Lagrange multipli-
ers that impose the boundary conditions dfq�

� df0
q�

�
0 [26]. In order to extract the interaction part of the
free energy, we should regularize the partition function
as Ẑq�

�d� � limD!`�Zq�
�d�Zq�

�D 2 d��Zq�
�D�2�2�, so

that Ẑq�
�`� � 1 [25]. Applying this to Zb,q�

, we have

Ẑb,q�
�d� �

ek1d

2

∑
sinh2�k1d� 2

k2
1

k2
2

sin2�k2d�
∏21�2

,

(15)

k6 � k6�q��

�

s
1
2

�
p

�q2
� 2 q2

0�2 1 p4
0 6 �q2

� 2 q2
0�� . (16)

In the same way, we obtain the regularized surface partition
function Ẑs,q�

, which has a voluminous expression that
cannot be written down here. The interaction free energy
216101-2
per area is obtained as

F � 2kBT
Z dq�

�2p�2 �lnẐb,q�
1 lnẐs,q�

� . (17)

First we focus on the bulk contribution by taking the
“strong anchoring” limit vs ! `, gs ! `, for which
Ẑs,q�

� 1. We show the result in terms of the disjoining
pressure P � 2≠F�≠d. At the critical point p0 � 0, the
contributions to the pressure from the regions q� , q0
and q� . q0 are given by, respectively,

P, � 2
kBT

2pd3

Z q0d

0
ds

s2�s 2 sins coss�
s2 2 sin2s

(18)8<
: �2

kBTq2
0

2pd , q0d ø 1 ,

�2
kBTq2

0

4pd , q0d ¿ 1 ,
(19)

where s is for
p

q2
0 2 q2

� d, and

P. � 2
kBT

2pd3

Z `

0
dt

t2�e2t sinht 1 t2 2 t�
sinh2t 2 t2

� 20.5463 . . . 3
kBT
d3 , (20)

where t is for
p

q2
� 2 q2

0 d. Note that the total force
P, 1 P. is proportional to 1�d at large distances. To
my knowledge, it is more long-ranged than any (thermal or
quantum) Casimir interaction ever predicted for a 3D sys-
tem. As seen from Eq. (18), the origin of the 1�d tail lies
in that every in-plane mode with a wave number q� , q0
has a long-range correlation. It is further reduced to the
fact that the bulk soft modes of the system are distributed
over the surface of the sphere jqj � q0. This is in contrast
to the case of a critical simple fluid, in which the soft mode
is located on the single point q � 0 and the Casimir force
is proportional to d23 (in the harmonic approximation).
The extra factor d2 in the present system is thus explained
by the dimensionality of distribution of soft modes in the
q space. Shown in Fig. 1(a) is the force profile at the criti-
cal point.

In real systems, nonlinearity in the free energy makes
the I-L transition weakly first order [27], and hence we
do not expect to see the truly long-ranged force. For
block copolymers, for instance, we estimate the typical
and effective value of p0�q0 at the transition to be 0.4.
Shown in Fig. 1(b) is the profile of the scaled pressure
Pd3�kBT at finite values of p0�q0. Even considerably
above the transition, the force has a range of several times
p�q0, the lamella thickness. A weak oscillation arises
from the region q� , q0, while the contribution from the
region q� . q0 is always monotonic. Note also the large
magnitude of the interaction; the scaled pressure in its
decay range is typically 10 times larger than the value
Pd3�kBT � 20.096 for nematic liquid crystals in the
one-constant approximation [5].

Next we study the role of fluctuations at boundaries.
For the present model with a vanishing surface potential
(vs � gs � 0), it is known that the mean-field solution
f � 0 is destabilized above the bulk I-L transition [17].
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FIG. 1. Profile of the Casimir force in the strong anchoring
limit vs ! `, gs ! `. (a) Log-log plot of the absolute value
jPj at the critical point p0 � 0. (b) Scaled disjoining pressure
above the transition temperature.

The instability remains for a small but finite surface
potential. I calculated the region of surface parameters
for which the homogeneous mean-field solution is stable
at any temperature above the bulk I-L transition. It
is plotted in Fig. 2(a) in terms of the dimensionless
parameters Vs � vs��eq3

0� and Gs � gs��eq0�. Shown
in Fig. 2(b) is the disjoining pressure for different values
of �Vs, Gs� in the stable region and at the bulk transi-
tion temperature. The force has the asymptotic behavior
limd!`Pd��kBTq2

0� � 2C, where C is a positive number
that weakly depends on �Vs, Gs�. An oscillation in P�d�
appears for a small surface potential, and is amplified as
we approach the instability line. On the line, the quantity
Pd��kBTq2

0� is almost periodic in d except at small
distances. The peak positions are approximately given by
d � �np 1 c��q0, where n is any integer and the phase
shift c moves over the region �0, p� as we move over the
instability line. To see the origin of the oscillation, we
consider the simplifying limit �Vs, Gs� � �`, 0�, which is
216101-3
(a)

(b)

0 5 10 15 20
q0 d

-0.2

-0.1

0.0

Π
d 

/ (
k B

T
 q

02 )
0.5
0.6
1.5
∞

0 1 2 3
Ωs

0

1

2

3

stableG
s

FIG. 2. (a) Region of stability of the mean-field solution f �
0. Outside of the region, the surface-induced I-L transition
[15] preempts the bulk transition, even if there is only one wall
(d ! `). (b) Surface-potential dependence of the Casimir pres-
sure. Plots are for �Vs , Gs� � �0.5, 0.5�, �0.6, 0.6�, �1.5, 1.5�,
and �`, `�, all at the bulk transition temperature. The point
�0.5, 0.5� is on the instability line.

an end point of the instability line. The interaction free
energy in this limit reads

F �
kBT
2p

Z `

0
q�dq�

3 �lnj2 sin
q

q2
0 2 q2

� dju�q0 2 q��
1 ln�1 2 e22

p
q2

�2q2
0 d�u�q� 2 q0�� . (21)

Although it is a continuous function of d, its gradient
[and so P�d�] logarithmically diverges at d � np�q0

(.0), due to the contribution of the mode with �q�, qz� �
�0, q0�. This is closely related to the fact that the mode
f ~ sin�q0z�, which is soft in infinite bulk, is allowed
by the boundary condition f�0� � f�d� � 0 only when
d � np�q0. When we gradually increase d to cross one of
the node points, the soft mode is abruptly allowed and then
prohibited again, which corresponds to the rise and drop
of the disjoining pressure. For physical (finite) values of
216101-3
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Vs, boundary constraints are not strict and the oscillation
in P�d� is not singular [28].

Up to now, we have assumed that the walls are ide-
ally neutral. In general, the walls have a specific interac-
tion with the fluid, which is most simply described by the
linear Hamiltonian DHs �

R
dr hsf�d�z� 1 d�z 2 d��.

The surface field hs induces a mean-field interaction be-
tween the walls. Let us compare its magnitude with that
of the Casimir interaction. To be specific, we consider
symmetric diblock copolymer melts with N � 103, a �
0.5 nm, and T � 400 K, for which the lamella thickness
p�q0 equals 11 nm. For Vs � Gs � hs��eq3

0� � 1.0,
p0�q0 � 0.4, and d � 4.7p�q0 � 50 nm, minimization
of H � Hb 1 Hs 1 DHs gives the surface value of
the order parameter f � 0.54 and the mean-field pressure
Pmf � 211 Pa [29]. On the other hand, the Casimir pres-
sure for the same parameters and at the same distance is
Pca � 269 Pa. The ratio Pca�Pmf � 6.3 shows that the
fluctuation effect on the total structural force is significant
within several lamella thicknesses. It should be mentioned
that harmonic approximation to the free energy is valid
only for a weak surface field. It would be realized, for
instance, by use of substrates coated by a thin sheet of ran-
dom copolymers [14]. For a strong surface field, the order
parameter is saturated at the walls where there appear wet-
ting layers of the lamellar phase [15]. In that case, the
above estimate should be applicable to the force between
the surfaces of the wetting layers.

To summarize, we predict an unconventionally strong
thermal Casimir effect in structured fluids above the
isotropic-lamellar transition. At the ideally continuous
transition, the force has a long-range tail proportional to
1�d, which is due to the two-dimensional distribution of
bulk soft modes in the q space. The qualitative result
should commonly hold for model systems in which the
bulk structure factor diverges at a finite wave number
[30]. Although the force cannot be genuinely long-
ranged in a real system, one should be able to access
the temperature region where the force has a range of
several layer thicknesses, within which it is much stronger
than the conventional Casimir force at criticality. This
implies that it also dominates other dispersion forces,
such as the van der Waals interaction, which is often
comparable to the critical Casimir force [7–9]. We
have also studied the role of surface potential. Within a
standard model of microemulsions, the force profile shows
an oscillation near the surface-induced I-L transition. The
oscillation originates in resonance of a soft mode in the
slab geometry. A measurement of structural force near
the sponge-lamellar transition has reported an oscillatory
force superimposed on an attractive background [31].
However, more systematic study with controlled surface
properties seems necessary to extract the fluctuation part
of the interaction. I wish the present work to stimulate
further experimental investigation.
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